Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Цифровые фильтры

Цифровая система обработки сигналов

Обработка дискретных сигналов осуществляется как правило в цифровой форме: каждому отсчёту ставится в соответствие двоичное кодовое слово и, в результате, действия над отсчётами заменяются на действия над кодовыми словами. Таким образом дискретная цепь становится цифровой цепью, цифровым фильтром (ЦФ). Перевод отсчётов в двоичные кодовые слова происходит в аналогово-цифровом преобразователе (АЦП). На выходе ЦФ (рис.3.1) осуществляется обратная операция: кодовые слова в цифро-аналоговом преобразователе превращаются в отсчёты дискретного сигнала и, наконец, на выходе, синтезирующего фильтра (СФ) формируется обработанный аналоговый сигнал.

Дискретная и цифровая цепи описываются одинаковыми уравнениями. Отличие состоит в приближённом характере представления отсчётов сигнала кодовыми словами конечной размерности (ошибки квантования). Поэтому сигнал на выходе цифровой цепи отличается от идеального варианта на величину погрешности квантования.

Цифровая техника позволяет получить высокое качество обработки сигналов несмотря на ошибки квантования: ошибки (шумы) квантования можно привести в норму увеличением разрядности кодовых слов. Рациональные способы конструирования цифровой цепи также способствуют минимизации уровня шумов квантования.

Расчёт цифровой цепи по заданным требованиям к её характеристикам имеет ряд принципиальных особенностей в зависимости от наличия обратной связи. Эти особенности являются следствием конечной длины импульсного отклика нерекурсивного ЦФ.

Поэтому нерекурсивные фильтры содержат большое число элементов цепи, но вместе с тем имеют целый ряд важных достоинств: нерекурсивные ЦФ всегда устойчивы, позволяют строить фильтры с минимальной линейной фазой, отличаются простой настройкой. С учётом изложенного становятся понятны причины, по которым методы расчёта нерекурсивных ЦФ и рекурсивных цифровых фильтров принято рассматривать отдельно.

Расчёт нерекурсивных ЦФ общего вида.

Цель расчёта нерекурсивных цифровых фильтров (рис. 3.2,а) заключается в расчёте значений коэффицентов и их числа N по допускам на системные характеристики, а так же в расчёте разрядности кодовых слов и выборе оптимального динамического диапазона ЦФ по нормам на помехозащищённость сигнала и вероятность перегрузки системы, что определяется эффектами конечной разрядности кодовых слов.

Требования к системным характеристикам чаще задаютс относительно одной из них: импульсной или частотной. Поэтому различают расчёт ЦФ во временной области и расчёт ЦФ в частотной области.

Расчёт ЦФ во временной области.

Требуемая импульсная характеристика в общем случае имеет бесконечную протяжённость во времени. Поэтому вначале необходимо задаться конечным числом N первых отсчётов требуемой импульсной характеристики

.

Оставшиеся отсчёты по причине их малости отбрасывают и определяют погрешность приближения, которую можно оценить, например, по среднеквадратичному критерию близости.

Коэффициенты фильтра принимаются равными соответствующим отсчётам требуемой импульсной характеристики. После расчёта разрядности коэффицентов, шумов квантования и масштабирующих коэффицентов остаётся оценить погрешность реализованной импульсной характеристики по отношению к требуемой и принять решение о необходимости повторного расчёта.

Расчёт ЦФ в частотной области.

Вначале необходимо продолжить требуемую частотную характеристику на диапазон [0,5wд; wд] по правилам комплексно-сопряжённой симметрии (рис. 3.2,б), что определяется вещественным характером импульсного отклика. По характеристикам следует определить N комплексных частотных отсчётов

,

где число N выбирается ориентировачно с таким расчётом, чтобы плавным соединением точек и требуемые кривые восстановились без заметных искажений.

Расчёт коэффицентов фильтра выполняется по формуле обратного ДПФ

Перейти на страницу: 1 2 3 4 5 6

Немного больше о технологиях >>>

Ламинарное и турбулентное течение вязкой жидкости
Вязкость. Коэффициент вязкости. Слоистое движение жидкости, возникающее при сильном влиянии трения. Воздействие статического давления на твердые тела, находящиеся в поле течения. Вязкий поток. Число Рейнольдса. ...

Изо всех лошадиных сил
В 1765 году англичанин Джеймс Уатт изобрел паровую машину, положив начало длинной цепочке инноваций в двигателестроении. В 1860 году французский механик Этьен Ленуар разрабатывает первый поршневой двигатель внутреннего сгорания. В 1889 году швед Карл Густав Патрик Лаваль, соверш ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512