Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Цифровые фильтры

(3.1)

Затем необходимо расчитать реализованные частотные характеристики по формулам, которые следуют из выражения для передаточной функции фильтра.

, или . (3.2)

Остаётся сравнить требуемые и реализованные характеристики и принять решение о необходимости повторного расчёта.

Расчёты по учёту эффектов конечной разности кодовых слов остаются прежними.

Схемы и характеристики фильтров с линейной фазой

Нерекурсивный фильтр позволяет получить четную или нечетную импульсную характеристику и, как результат, линейную ФЧХ или произвольной АЧХ, что следует из теоремы о спектре четных и нечетных сигналов: спектр фаз четных и нечетных сигналов является линейным.

Фильтры с четными импульсными характеристиками называются симметричными, с нечетными - антисимметричными. Каждый из отмеченных типов фильтров имеет свои особенности в зависимости от четности числа отводов N, что удобно рассмотреть на конкретных примерах.

Симметричные фильтры с нечетным N.

На рис. 3.3, а приведена схема и импульсная характеристика симметричного фильтра для случая N=5. Передаточная функция такой цепи:

H(Z) = a2 + a1Z-1 + a0Z-2 + a1Z-3 + a2Z-4 = Z-2 [a0 + a1 (Z + Z-1) + a2 (Z2 + Z-2)]

Отсюда, после подстановки Z = e jwT и с учетом формулы Эйлера

H (jw) = e -j2wT (a0 + 2a1 cos wT + 2a2cos 2wT)

следовательно, формулы АЧХ и ФЧХ

H(w) = a0 + 2a1 cos wT + 2a2cos 2wT, j(w) = -2wT

График АЧХ и графики поясняющие характер АЧХ - cos wT, cos 2wT - приведены на рис. 3.4, а.

Симметричные фильтры с четным N.

На рис. 3.3, б приведены схема и импульсная характеристика симметричного фильтра для случая N=4. Передаточная функция фильтра

H(Z) = a2 + a1Z-1 + a1Z-2 + a2Z-3 = Z-1,5 [a1 (Z0,5 + Z-0,5) + a2 (Z1,5 + Z-1,5)]

Отсюда H (jw) = e -j1,5wT (2a1 cos 0,5 wT + 2a2cos 1,5wT)

Соответствующие формулы АЧХ и ФЧХ

H(w) = 2a1 cos 0,5 wT + 2a2cos 1,5wT, j(w) = -1,5wT

Характер АЧХ и поясняющие графики - на рис. 3.4, б.

Антисимметричные фильтры с нечетным N.

На рис. 3.5, а приведены схема и импульсная характеристика антисимметричного фильтра для случая N=5.

Передаточная функция фильтра

H(Z) = a2 + a1Z-1 + 0Z-2 - a1Z-3 - a2Z-4 = Z-2 [a1 (Z - Z-1) + a2 (Z2 - Z-2)]

отсюда H (jw) = e -j2wT j(2a1 sin wT + 2a2 sin2wT)

Поэтому формулы АЧХ и ФЧХ

H(w) = 2a1 sin wT + 2a2 sin 2wT, j(w) = -2wT

Характер АЧХ и поясняющие графики - на рис. 3.6, f.

Антисимметричные фильтры с четным N.

Схема и импульсная характеристика для случая N=4 приведены на рис. 3.5, б. Передаточная функция

H(Z) = a2 + a1Z-1 - a1Z-2 - a2Z-3 = Z-1,5 [a1 (Z0,5 - Z-0,5) + a2 (Z1,5 - Z-1,5)]

Отсюда

H (jw) = e -j1,5wT j(2a1 sin 0,5 wT + 2a2sin 1,5wT)

Формулы АЧХ и ФЧХ

H(w) = 2a1 sin 0,5 wT + 2a2 sin 1,5wT, j(w) = -1,5wT

Характер АЧХ и поясняющие графики - на рис. 3.6, б.

Общие свойства фильтров с линейной фазой

Анализ рассмотренных вариантов фильтров с линейной фазой позволяет сделать выводы общего характера.

1. Симметричные фильтры.

H(0) № 0, j(w) = -wT (3.3)

а. Если N - нечетное, то АЧХ - четная функция

H(w) = а0 + 2 аm cos mwT (3.4)

Применяется при условии H(0,5wд) № 0

б. Если N - четное, то АЧХ - нечетная функция

H(w) = 2 аm cos [(m - 0,5) wT] (3.5)

Применяется при условии H(0,5wд) = 0

2. Антисимметричные фильтры

H(0) = 0, j(w) = -wT (3.6)

а. Если N - нечетное, то АЧХ - нечетная функция

H(w) = 2 аm sin m wT (3.7)

Перейти на страницу: 1 2 3 4 5 6

Немного больше о технологиях >>>

Каталитический этюд
Современное учение о катализе можно уподобить гигантскому живописному полотну, на котором с большого расстояния различимы два частично пересекающихся сюжета. Первый включает процессы, с помощью которых химики стремятся производить то, что давно умела делать природа. Речь идет в ...

Экспериментальное исследование нелинейных эффектов в динамической магнитной системе
Цель нашей работы заключалась в экспериментальном исследовании физических эффектов, возникающих в системе с вращающимися постоянными магнитами [1] и изучении сопутствующих эффектов. Построенную нами экспериментальную установку будем далее по тексту называть конвертором. Вся лаб ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512