Цифровые фильтры
(3.1)
Затем необходимо расчитать реализованные частотные характеристики по формулам, которые следуют из выражения для передаточной функции фильтра.
, или
. (3.2)
Остаётся сравнить требуемые и реализованные характеристики и принять решение о необходимости повторного расчёта.
Расчёты по учёту эффектов конечной разности кодовых слов остаются прежними.
Схемы и характеристики фильтров с линейной фазой
Нерекурсивный фильтр позволяет получить четную или нечетную импульсную характеристику и, как результат, линейную ФЧХ или произвольной АЧХ, что следует из теоремы о спектре четных и нечетных сигналов: спектр фаз четных и нечетных сигналов является линейным.
Фильтры с четными импульсными характеристиками называются симметричными, с нечетными - антисимметричными. Каждый из отмеченных типов фильтров имеет свои особенности в зависимости от четности числа отводов N, что удобно рассмотреть на конкретных примерах.
Симметричные фильтры с нечетным N.
На рис. 3.3, а приведена схема и импульсная характеристика симметричного фильтра для случая N=5. Передаточная функция такой цепи:
H(Z) = a2 + a1Z-1 + a0Z-2 + a1Z-3 + a2Z-4 = Z-2 [a0 + a1 (Z + Z-1) + a2 (Z2 + Z-2)]
Отсюда, после подстановки Z = e jwT и с учетом формулы Эйлера
H (jw) = e -j2wT (a0 + 2a1 cos wT + 2a2cos 2wT)
следовательно, формулы АЧХ и ФЧХ
H(w) = a0 + 2a1 cos wT + 2a2cos 2wT, j(w) = -2wT
График АЧХ и графики поясняющие характер АЧХ - cos wT, cos 2wT - приведены на рис. 3.4, а.
Симметричные фильтры с четным N.
На рис. 3.3, б приведены схема и импульсная характеристика симметричного фильтра для случая N=4. Передаточная функция фильтра
H(Z) = a2 + a1Z-1 + a1Z-2 + a2Z-3 = Z-1,5 [a1 (Z0,5 + Z-0,5) + a2 (Z1,5 + Z-1,5)]
Отсюда H (jw) = e -j1,5wT (2a1 cos 0,5 wT + 2a2cos 1,5wT)
Соответствующие формулы АЧХ и ФЧХ
H(w) = 2a1 cos 0,5 wT + 2a2cos 1,5wT, j(w) = -1,5wT
Характер АЧХ и поясняющие графики - на рис. 3.4, б.
Антисимметричные фильтры с нечетным N.
На рис. 3.5, а приведены схема и импульсная характеристика антисимметричного фильтра для случая N=5.
Передаточная функция фильтра
H(Z) = a2 + a1Z-1 + 0Z-2 - a1Z-3 - a2Z-4 = Z-2 [a1 (Z - Z-1) + a2 (Z2 - Z-2)]
отсюда H (jw) = e -j2wT j(2a1 sin wT + 2a2 sin2wT)
Поэтому формулы АЧХ и ФЧХ
H(w) = 2a1 sin wT + 2a2 sin 2wT, j(w) =
-2wT
Характер АЧХ и поясняющие графики - на рис. 3.6, f.
Антисимметричные фильтры с четным N.
Схема и импульсная характеристика для случая N=4 приведены на рис. 3.5, б. Передаточная функция
H(Z) = a2 + a1Z-1 - a1Z-2 - a2Z-3 = Z-1,5 [a1 (Z0,5 - Z-0,5) + a2 (Z1,5 - Z-1,5)]
Отсюда
H (jw) = e -j1,5wT j(2a1 sin 0,5 wT + 2a2sin 1,5wT)
Формулы АЧХ и ФЧХ
H(w) = 2a1 sin 0,5 wT + 2a2 sin 1,5wT, j(w) =
-1,5wT
Характер АЧХ и поясняющие графики - на рис. 3.6, б.
Общие свойства фильтров с линейной фазой
Анализ рассмотренных вариантов фильтров с линейной фазой позволяет сделать выводы общего характера.
1. Симметричные фильтры.
H(0) № 0, j(w) = -
wT (3.3)
а. Если N - нечетное, то АЧХ - четная функция
H(w) = а0 + 2
аm cos mwT (3.4)
Применяется при условии H(0,5wд) № 0
б. Если N - четное, то АЧХ - нечетная функция
H(w) = 2
аm cos [(m - 0,5) wT] (3.5)
Применяется при условии H(0,5wд) = 0
2. Антисимметричные фильтры
H(0) = 0, j(w) =
-
wT (3.6)
а. Если N - нечетное, то АЧХ - нечетная функция
H(w) = 2
аm sin m wT (3.7)
Немного больше о технологиях >>>
Применение гидролокатора бокового обзора для прокладки и контроля положения подводного трубопровода
При эксплуатации подводных участков нефте- и
газопроводов необходимы регулярные технические инспекции для контроля состояния
тела трубы и ее опор. Предлагаемая технология обследования подводного
трубопровода с использованием гидролокатора бокового обзора характеризуется
высокой ...
Оптимизация структуры стохастического графа c переменной интенсивностью выполнения работ
Задача
распределения ресурсов (нескладируемого типа) на cтохастических сетях (параллельные
проекты) сформулирована как обусловленная переменной структурой графа.
Предложенный метод решения обеспечивает получение экстремального графа для
случая, когда каждая работа многопроектно ...





