Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Гаусс, Вебер, Гербер и другие…

К.Ф. Гаусс, будучи уже знаменитым математиком, почти в конце своей жизни задумался над последствиями конечности скорости передачи действия на расстояние и после 15 лет раздумий и работы вывел в 1835 г. закон силы взаимодействия, зависящий от взаимной скорости взаимодействующих тел, для электродинамики частица – частица [1].

Гениальный математик, он оказался и гениальным физиком. Он рассуждал следующим образом. Если скорость распространения конечна, следовательно, взаимодействующие тела, движущиеся относительно друг друга со скоростью распространения, не могут взаимодействовать, поскольку потенциал взаимодействия от каждого тела не сможет достигать другого, т.е. будет полностью запаздывать. А это означает, что существует неизвестный закон силы взаимодействия от скорости, два крайних случая которого известны. Первый случай закона – когда относительная скорость взаимодействующих тел равна нулю, и при этом законом взаимодействия является закон Кулона; второй, – когда скорость между телами равна скорости взаимодействия, и тогда сила взаимодействия равна нулю. Это было главным отправным логическим основанием, мысленным моделированием состояний движения материи, закрепленным в математической форме и явилось громадным шагом вперед по сравнению с чистой эмпирикой Галилея и Ньютона.

Новая механизмная (от слова «механизм») методология физики вызрела в недрах научного мира из вихрей Декарта, в поисках механизмов взаимодействий в работах Ломоносова и Лесажа, в волновых теориях света Гюйгенса, Юнга, Френеля . и затем прорвалась мощным потоком в работах Гаусса, Максвелла, Гельмгольца, Бьеркнесса, Герца .

Большинство этих работ было создано с помощью «мысленного моделирования состояния движения эфира» (Максвелл). Разве можно было затем утверждать, что эфир послужил «лесами» для строительства теорий, после чего эти леса можно убрать? – Нет, это был «материал», «фундамент» и «остов» для строительства физики! Уберите эфир, и все рухнет. Как можно утверждать, что без эфира существует вихрь (rot) или истечение (div)? Или как можно смоделировать без эфира взаимодействия тел?

Методология теории относительности с ее постулатами и отказом от детерминизма, от мысленного представления движения материи (отказ от «обывательского» здравого смысла), от причинности и с передачей математике несвойственных ей функций в физике была шагом назад по отношению к эмпирике Галилея и Ньютона, не говоря уже о новых механизмных (механических) теориях, основанных на моделировании процессов.

Теория относительности развратила умы исследователей, отучила их мыслить, анализировать, искать и сомневаться. Достаточно для новой теории придумать два – три постулата – и все остальное сделает математика.

Математика – язык науки. Однако даже сами математики постоянно говорят нам о том, что математика – это жернов: что в него заложишь, то он и перемелет. Это понимал математик Гаусс. Этого не понимают современные физики. Загляните в научные физические журналы, и вы увидите там бесконечные математические исследования, ведущие в никуда.

Гаусс умер, не успев опубликовать свою, может быть главную работу в жизни. За него это должен был сделать его молодой друг, бывший коллега по Геттингену (Германия), Вебер. Однако мы не будем говорить сейчас об этической стороне случившегося. Вебер все-таки опубликовал работу Гаусса в его полном собрании сочинений, но уже после того, как сам стал знаменитым благодаря тому, что, поняв всю важность гауссовских исследований, он написал свой закон запаздывания потенциала, но уже не из соображения физического характера, не из моделирования процесса взаимодействия, не из мысленного представления процесса отставания потенциала, а взяв за основу всего лишь эмпирический закон Ампера для взаимодействия двух проводников с током.

Перейти на страницу: 1 2 3 4

Немного больше о технологиях >>>

Подходы к объяснению шаровой молнии
В декабре 1975 года журнал «Наука и жизнь» обращался к читателям с вопросом о наблюдении шаровых молний. Среди 1400 писем очевидцев 0,3% из них утверждают, что встретившаяся им молния имела форму тора [1, стр.103]. Там же высказывается мнение, что в большинстве случаев шаро ...

Особенности советской и американской науки
Что мы имели? Сейчас много пишется о разрушении советской науки, о тяжелом положении, в котором оказались ученые и научные сотрудники бывшего СССР. И это действительно так. Чтобы разобраться в этом, рассмотрим хотя бы схематически организацию советской науки. Одной из к ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512