Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Эволюция концепции доказательства

Греки полагали, что утверждения математики абсолютно точны и достоверны, тогда как данные опытного знания приблизительны, обманчивы и недостоверны: даже равенство двух отрезков может быть доказано не измерением, а рассуждением. "Приближенными вычислениями стыдно заниматься свободному человеку, они - удел раба".

"При помощи математики очищается и получает новую жизненную силу орган души, в то время как другие занятия уничтожают его и лишают способности видеть, тогда как он значительно более ценен, чем тысяча глаз, ибо только им одним может быть обнаружена истина". Платон

Греки использовали в доказательствах только геометрически наглядные средства, а не буквенные символы. Поразительно, что в рамках столь трудной геометрической алгебры им удалось получить так много результатов. В Новое время Ньютон следовал греческой традиции, а Лейбниц - нет.

Математический язык

Величины в геометрии отличали от чисел в арифметике: величины именовали длинами, квадратами и кубами и использовали как именованные. Алгебраическая буквенная символика возникла в арифметической алгебре из стандартных (и сокращенных) словесных обозначений. Языки геометрии и арифметической алгебры существовали параллельно.

Декарт (1596 - 1650) построил над языками геометрической и арифметической алгебры новый язык - алгебраический. Синтаксис нового языка похож на синтаксис языка арифметической алгебры, семантика - на семантику языка геометрической алгебры.

Декарт превратил процесс в объект: отношение величин (процесс) стало рациональным или иррациональным числом (объектом). Тем самым Декарт совершил квантовый эволюционный переход к абстрактному понятию числа, переход, оказавшийся не под силу грекам. Введенное Декартом понятие числа было языковым конструктом, а не пространственным образом. Декарт принципиально изменил содержание доказательства: отныне геометрическим образам осталась роль иллюстраций, они перестали быть средствами доказательства.

Буквенная символика открыла вход в математику поверх барьеров геометрической алгебры и словесных обозначений. Книгопечатание окончательно сделало математику доступной всей массе образованных людей. Стали обычным делом публичные состязания в доказательствах.

Через полвека благодаря Декарту Лейбниц и Ньютон совершили следующий квантовый переход.

Математическое доказательство в Новое время

Ньютон вывел законы Кеплера из закона всемирного тяготения и трех законов движения. Математическое доказательство привело к открытию закона природы. Ньютон пользовался геометрическим языком, и обозначения его "Начал" не повлияли на математическую технологию. Предложенные Лейбницем эффективные обозначения открыли поле деятельности, на котором за триста лет было доказано невероятное количество теорем в созданных на основе новых понятий производной и интеграла многочисленных новых отраслях математики.

Ни отцы-основатели, ни их последователи не могли обосновать свои результаты, оправдывали их только приносимой ими удачей. Вакханалия использования нечетких понятий и методов приводила к неверным результатам, спорам и сомнениям. Выдающимся источником неприятностей была теория пределов с ее свободным обращением с бесконечностью. Блестяще выразился о новой математике Вольтер: "Искусство считать и точно измерять то, существование чего непостижимо для разума". Все попытки выйти из положения, даже предпринятые Эйлером и Лагранжем, потерпели полную неудачу. Внутренняя дисциплина в математике к середине XIX века упала настолько, что Кэли, приведя формулировку теоремы для квадратных матриц и проверив ее для матриц 2х2, не счел "необходимым обременять себя формальным доказательством теоремы в общем случае матрицы любого порядка" и призвал просто поверить ему.

Трудности коренились в том, что новые понятия находились на более высоком уровне абстракции. Грекам было легче, их понятия были ближе к (презираемому!) опыту, а те понятия, которые доставили столько волнений в Новое время, хитроумные греки обходили. Новые понятия были уже не обобщением опыта, а созданием разума, лишенным привычной опоры в наглядности. Язык формул обладал не только притягательной, но и производительной силой.

Перейти на страницу: 1 2 3 4 5 6

Немного больше о технологиях >>>

Преобразователь разности давлений Сапфир-22ДД
Описание контура. Назначение. Технические данные. Устройство и работа. Техническое обслуживание. Монтаж прибора. Настройка и проверка. Основные неисправности. Техника безопасности. Сапфир-22ДД-Ex (датчик расхода) В химической промышленности комплексной механизац ...

Стратегия «золотой середины»
Выработанная веками народная мудрость, правило поведения или закон природы? Ниже я постараюсь показать, что это такой же универсальный закон природы как, скажем, закон всемирного тяготения. Понятие золотой середины далеко не ново. О нем писали еще Конфуций (551...479 до н.э. ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512