Электростатическое взаимодействие точечных зарядов
|w3/(w1+w2)| ≤ 1, (22)
то есть плотность энергии взаимодействия зарядов в каждой точке поля никогда не превышает суммы плотностей их собственных силовых полей. Новая деформированная структура поля обладает большей энергией, чем недеформированная. Поле «стремится» избавиться от избыточной энергии, и отсюда возникают силы взаимодействия. Механизм образования деформированной «надструктуры» w3 целиком определяется принципом суперпозиции (векторным сложением напряжённостей полей).
Выясним, как соотносятся полные энергии взаимодействия внутри центральной зоны и за её пределами? Ответ на него может дать интегрирование по формуле (17) с учётом (16) и (18). Интеграл по y после подстановки
dV = 2πR03ydydx, y2 = z, 2ydy = dz (23)
в формулу (17) становится табличным. Вводя обозначения,
a = 1, b = x2 + (1 – x)2, c = x2(1 – x)2, (24)
имеем
A ∫V w3dV = A∙2πR03∫xdx ∫z (± c1/2 + z) dz / (az2 + bz + c)3/2 = B ∫xI(x)dx, (25)
I(x) = (± c1/2 – z)/(4ac – b2)(az2 + bz + c)1/2|0∞ = [1/(1 – 2x)2] ± [1/(1 – 2x)2], (26)
B = (q2∙4πR03/32π2ε0R04) = q2/8πε0R0. (27)
Смысл I(x) – потенциальная энергия на единицу длины вдоль x, просуммированная по бесконечной плоскости (с координатой x), перпендикулярной оси x. С другой стороны, это – осреднённая в названной плоскости относительная сила воздействия на заряд слоем поля, толщиной dx. График I(x) показан на рис. 3.
Рис. 3. Изображение I(x) по формуле (26)
Интеграл (25) вычисляется в пределах от нуля до бесконечности. При этом надо различать три области по x:
1) область отрицательных значений (–∞ < x < 0, знак плюс перед c1/2);
2) область между зарядами (0 ≤ x ≤ 1, знак минус перед с1/2);
3) область оставшихся положительных значений (1 < x < ∞, знак плюс перед c1/2).
Аналогично применяются знаки в правой части (26).
Вычисления по формуле (25) дают следующие результаты. В областях 1 или 3
I1, 3(x) = q2/4πε0R0(1 – 2x)2. (28)
Во второй области
I2(x) = 0. (29)
Из формул (3), (17), (25) следует, что и в других случаях, каковы бы ни были величины и знаки зарядов, потенциальная энергия в области 2 равна нулю, причём компенсация положительных и отрицательных вкладов происходит в каждой плоскости x = const. Этот факт заслуживает особого внимания, так как в области 2 происходят существенные деформации поля. Таким образом, оказывается, что вся энергия взаимодействия сосредоточена в областях 1 и 3 поровну. Воздействие на заряды осуществляется не из пространства между зарядами, а из пространства снаружи.
Интегрирование выражения (25) по x в пределах от –∞ до +∞ приводит к результату
∫I1,3(x)dx = (q2/4πε0R0)·(0,5+0,5) = q2/4πε0R0 = U. (30)
Независимое интегрирование (17) воспроизводит (ещё раз!) закон Кулона для U и подтверждает предположение (15). Интересная деталь: в выражении (17) значимые для взаимодействия зарядов величины (q и R0) выводятся за знак интеграла, образуя необходимую энергию U, а сам интеграл, в конечном счете, оказывается равным единице при любых обстоятельствах. Формулы (25) .(30) демонстрируют вероятностный характер распределения энергии внутри поля, и объясняют причину совпадения расчётов энергии взаимодействия двумя разными способами, упомянутыми во введении. Так и должно быть, потому что напряжённости E обладают свойствами квантовомеханических амплитуд [14].
При рассмотрении взаимодействия разноимённых зарядов значение W3 (см. формулу (13)) становится положительным внутри центральной зоны, и отрицательным за её пределами. Знак минус приобретает потенциальная энергия U.
Функция W3 применяется также в вариационной процедуре (принципе наименьшего действия) для электрической составляющей электромагнитного поля (см. [5, 12]). В этом случае W3 с самого начала рассматривается, как распределение вероятностей взаимодействия по точкам пересечения напряжённостей E1 и E2 в пространстве. Результат такой процедуры для статического поля тот же, как по форме (вычисление функции Лагранжа по формулам (25) .(30)), так и по содержанию (закон Кулона).
Р.Фейнман в своей Нобелевской лекции [13] отмечает: « .электродинамику можно построить . различными способами, – на основе дифференциальных уравнений Максвелла, (или) на основе различных принципов наименьшего действия с полями, и без полей . Самые фундаментальные законы физики после того, как они уже открыты, все-таки допускают такое невероятное многообразие формулировок, по первому впечатлению не эквивалентных, и всё же таких, что после определенных математических манипуляций между ними всегда удаётся найти взаимосвязь. Чем это можно объяснить, – остаётся загадкой. Думается, что здесь каким-то образом отражается простота природы. Может быть, вещь проста только тогда, когда её можно исчерпывающим образом охарактеризовать несколькими различными способами, ещё не зная, что на самом деле ты говоришь об одном и том же».
Немного больше о технологиях >>>
Антенна излучающая
К одной из важнейшей научно-технической
проблеме современности можно отнести освоение водного пространства.
Освоение океана повлекло множество
технических проблем. Одной из них являлась невозможность заглянуть в глубины
океана, узнать особенности дна, наличие и особенности ...
Применение световода на уроках физики
Школьник понимает физический опыт только
тогда хорошо, когда он его делает сам. Но еще лучше он понимает его, если сам
делает прибор для эксперимента.
П.Л.Капица
Физический эксперимент... Постановка его на
уроке позволяет учителю не только подробно рассмотреть физические я ...