Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Метод расчета скейлинговых констант Фейгенбаума для одномерных дискретных отображений по точкам сверхустойчивых циклов

Напомню для начала некоторые факты из теории универсальности Митчелла Фейгенбаума. Будем называть непрерывное отображение отрезка в себя унимодальным, если внутри отрезка имеется точка экстремума и по обе стороны от неё отображение является строго монотонным (с одной из сторон возрастающим, с другой убывающим). Условимся далее рассматривать только унимодальные отображения вида

(1)

Если последовательность {} при данном r состоит из n точек, такую последовательность будем называть n-циклом, что =f( ), =f( ), …, =f( ) или . Заметим, что производная порядка n функции (n раз вычисленной функции f(x)) в точке x по правилу дифференцирования сложной функции равна .

Точки цикла, удовлетворяющие соотношению

(2)

называются неподвижными.

Величина (так называемый мультипликатор) определяет устойчивость n-цикла и её принято называть устойчивостью (stability, [2], p.121). n-цикл называется устойчивым, если <1.

n-цикл, содержащий в качестве одной из своих точек, называются сверхустойчивым. Для такого цикла =0.

Как было продемонстрировано в 1978 году М.Фейгенбаумом [4], значения параметра , при которых число устойчивых периодических точек удваивается и становится равным , удовлетворяют масштабному соотношению, или как говорят имеют скейлинг:

(3)

Данное соотношение встречается также и в следующей записи:

,n>>1 ([1], стр. 49),

(3.1)

Рис.1

Или в таком виде:

,(см. [2], p.3),

Расстояния от точки , где - точка экстремума рассматриваемого отображения (на рис 1. x=1/2), до ближайшей к ней точки на - цикле подчиняются следующему соотношению:

, n>>1

(4)

Константы Фейгенбаума имеют значения , и являются ни много ни мало мировыми транцедентными числами, такими как или e.

Перейти на страницу: 1 2 3

Немного больше о технологиях >>>

Наш дом — Вселенная
Вот дом, который построил Джек. Англ. народная песенка. Пер. С.Маршака Как точно написать свой адрес? Сначало просто: квартира, дом, улица, город, страна. Потом, чуть подумав: планета Земля, звезда Солнце, галактика Млечный Путь. Далее (по мере укрупнения масштаба и фан ...

Нанотехнологии в современных системах вооружения
Не секрет, что применение высоких технологий в современной военной технике является залогом успешного ведения боевых действий. Благодаря этому повышается автономность используемой боевой техники, а также ее эффективность. Уже существуют автономные разведывательные роботы-самоле ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512