Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Квантовая механика, ее интерпретация

Немецкий физик В.Гейзенберг в 1925 году построил формальную схему, в которой вместо координат и скоростей электрона фигурировали некоторые абстрактные абстрактные величины - матрицы.

Работа Гейзенберга была развита Борном и Иорданом. Так возникла матричная механика.

Вскоре после появления уравнения Шредингера эквивалентность этих двух форм была доказана.

Окончательное формирование квантовой механики как последовательной теории связано с работой Гейзенберга 1927 года, в которой был сформулирован принцип, утверждающий, что любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные, точные значения. Этот принцип получил название "соотношение неопределенностей".

Соотношение неопределенностей устанавливает, что понятия координаты и импульса в классическом смысле не могут быть применены к микроскопическим объектам. Никакой эксперимент не может привести к одновременно точному измерению входящих в соотношение неопределенностей динамических переменных. При этом неопределенность в измерениях связана не с несовершенством измерительной техники, а с объективными свойствами микромира.

Завершение построения аппарата квантовой механики породило острые дискуссии в отношении интерпретации этой теории, поскольку она существенно отличается от классических теорий.

Важное отличие состоит в том, что в классических теориях описываются свойства объектов вне их отношения к тем приборам, с помощью которых обнаруживаются эти свойства, в то время как в квантовой механике учет условий наблюдения неотъемлем от самой теоретической постановки проблемы ( при этом в различных макроскопических ситуациях микроявления обнаруживают различные, порой прямо противоположные свойства, например, частицы или волны ).

Другим существенным отличием квантовой механики от классической, вызвавшим острые дискуссии, является ее принципиально вероятностный характер.

Умонастроение, характерное для классической науки, отражено в высказывании Лапласа о том, что если бы существовал ум, осведомленный в данный момент о всех силах природы в точках приложения этих сил, то "не осталось бы ничего, что было бы для него недостоверно, и будущее, так же как и прошедшее, предстало бы перед его взором".

Это умонастроение классической науки, четко выраженное Лапласом в его работе "Опыт философии теории вероятностей" (1814 год), часто и связывается с его именем, называется лапласовским детерминизмом. Безусловно, что это умонастроение не исчерпывается приведенным высказыванием Лапласа о всеведущем разуме. Оно представляет собой тонкую и глубокую систему и представлений о реальности и способах ее познания.

С позиций лапласовского детерминизма ньютоновская механика с ее однозначными законами является каноном, идеалом научного знания вообще, всякой научной теории. Любая теория с этой точки зрения должна исчерпывающим образом описывать свойства реальности на базе строго однозначных законов, как это делает механика.

Активное применение теории вероятностей в физике, которое началось с середины 19 века, привело к появлению нового типа законов и теорий - статистических.

Важно подчеркнуть, что использование вероятностно-статистических методов в науке не противоречит концепции лапласовского детерминизма. На эмпирическом уровне объекты даны в единстве существенных и несущественных, случайных свойств, поэтому использование вероятностных представлений вполне обосновано. На теоретическом уровне использование вероятностей предполагало однозначную детерминированность тех индивидуальных явлений, которые в совокупности дают статистический закон.

Перейти на страницу: 1 2 3 4

Немного больше о технологиях >>>

Технологические основы электроники
1. Изобразить и описать последовательность формирования изолированных областей в структуре с диэлектрической изоляцией Рис. 1. Последовательность формирования изолированных областей в структуре с диэлектрической изоляцией: а — исходная пластина; б — избирательно ...

Колумбия ожидание мира
«Мы — колумбийцы — выжили в таких трудных географических условиях — и горы, и болота. Мы не сломались, несмотря на десятилетия непрекращающейся войны. Мы продолжаем работать и радоваться жизни. Война — это как явление природы, как ураган, ему нужно сопротивляться!» Не знаю, к ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512