Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Квантовая механика, ее интерпретация

Квантовая механика (волновая механика) - теория, которая устанавливает способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми на опыте.

Квантовая механика описывает законы движения микрочастиц. Однако поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, постольку квантовая механика применяется для объяснения многих макроскопических явлений. Например, квантовая механика позволила понять многие свойства твердых тел, последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звезды, выяснить механизм протекания термоядерных реакций в Солнце и звездах.

Для классической механики характерно описание частиц путем задания их положения в пространстве (координат) и скоростей и зависимости этих величин от времени. Опыт показал, что такое описание частиц не всегда справедливо, в частности, оно не применимо для описания микрочастиц.

Квантовая механика делится на нерелятивистскую, справедливую в случае малых скоростей, и релятивистскую, удовлетворяющую требованиям специальной теории относительности.

Нерелятивисткая квантовая механика (как и механика Ньютона для своей области применимости) - это законченная и логически непротиворечивая фундаментальная физическая теория.

Релятивистская квантовая механика не является в такой степени завершенной и свободной от противоречий теорией.

Если в нерелятивистской области можно считать, что взаимодействие передается мгновенно на расстоянии, то в релятивистской области оно распространяется с конечной скоростью, значит, должен существовать агент, передающий взаимодействие - физическое поле. Трудности релятивистской теории - это трудности теории поля, с которыми встречается как релятивистская классическая механика, так и релятивистская квантовая механика.

Соотношение между классической и квантовой механикой определяется существованием универсальной мировой постоянной - постоянной Планка, которая называется также квантом действия и имеет размерность действия. Если в условиях данной задачи физические величины размерности действия значительно больше постоянной Планка, то применима классическая механика. Формально это условие и является критерием применимости классической механики.

Общая теория относительности - неквантовая теория. В этом отношении она подобна классической электродинамике Максвелла. Однако наиболее общие рассуждения показывают, что гравитационное поле должно подчиняться квантовым законам точно так же, как и электромагнитное поле. Применение квантовой теории к гравитации показывает, что гравитационные волны можно рассматривать как поток квантов - гравитонов.

Впервые квантовые представления были введены в 1900 году немецким физиком Планком в работе, посвященной теории теплового излучения. Существовавшая в то время теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила в противоречию. Чтобы его разрешить, Планк предположил, что свет испускается не непрерывно (как это следовало из классической теории излучения), а определенными дискретными порциями энергии - квантами.

Эйнштейн в 1905 году построил теорию фотоэффекта, развивая квантовые представления Планка. Эйнштейн предположил, что свет не только испускается и поглощается, но и распространяется квантами, т.е.что дискретность присуща не только процессам испускания и поглощения света, но и самому свету, что свет состоит из отдельных порций - световых квантов.

Перейти на страницу: 1 2 3 4

Немного больше о технологиях >>>

История развития искусственного интеллекта
Раньше с понятием искусственного интеллекта (ИИ) связывали надежды на создание мыслящей машины, способной соперничать с человеческим мозгом и, возможно, превзойти его. Эти надежды, на долгое время захватившие воображение многих энтузиастов, так и остались несбывшимися. И хотя ф ...

Замысел Бога в Его Творениях
На рубеже 16-17 веков, когда наука в совpеменном смысле слова еще только заpождалась, большинство ученых были глубоко веpующими христианами. Они считали, что их исследования пpиpоды позволяют лучше увидеть и понять мудpость и благость Господа, пpоявляемые в Его созданиях. Од ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512