Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Принцип дополнительности

Бор в данной дискуссии занял противоположную позицию, исходящую из признания объективной неопределенности динамических параметров микрочастицы как причины статистического характера квантовой теории. По его мнению, отрицание Энштейном существования объективно неопределенных величин оставляет необъясненным присущие микрочастице волновые черты. Возврат к классическим представлениям движения микрочастицы Бор считал невозможным.

В 50-х гг. ХХ века Д.Бом вернулся к концепции волны-пилота де Бройля, представив пси-волну в виде реального поля, связанного с частицей. Сторонники копенгагенской интерпретации квантовой теории и даже часть ее противников позицию Бома не поддержали, однако она способствовала более углубленной проработке концепции де Бройля: частица стала рассматриваться в виде особого образования, возникающего и движущегося в пси-поле, но сохраняющего свою индивидуальность. Работы П.Вижье, Л.Яноши, разрабатывавших данную концепцию, были оценены многими физиками как слишком "классичными".

В отечественной философской литературе советского периода копенгагенская интерпретация квантовой теории была подвергнута критике за "приверженность к позитивистским установкам" в трактовке процесса познания. Однако рядом авторов отстаивалась справедливость копенгагенской интерпретации квантовой теории.[5] Смена классического идеала научного познания неклассическим сопровождалась пониманием того, что наблюдатель, пытаясь построить картину объекта, не может отвлечься от процедуры измерения, т.е. исследователь оказывается не в состоянии измерять параметры изучаемого объекта такими, какими они были до процедуры измерения. В.Гейзенберг, Э.Шредингер и П.Дирак положили принцип неопределенности в основу квантовой теории, в рамках которой частицы уже не имели определенных и не зависящих друг от друга импульса и координат. Квантовая теория, таким образом, внесла в науку элемент непредсказуемости, случайности. И хотя Эйнштейн не смог согласиться с этим, квантовая механика согласовывалась с экспериментом, а потому стала основой многих областей знания.

е) Квантовая статистика

Одновременно с развитием волновой и квантовой механики развивалась другая составная часть квантовой теории - квантовая статистика или статистическая физика квантовых систем, состоящих из большого числа частиц. На основе классических законов движения отдельных частиц была создана теория поведения их совокупности - классическая статистика. Аналогично этому на основе квантовых законов движения частиц была создана квантовая статистика, описывающая поведение макрообъектов в случаях когда законы классической механики не применимы для описания движения составляющих их микрочастиц - в данном случае квантовые свойства проявляются в свойствах макрообъектов. Важно иметь в виду, что под системой в данном случае понимаются лишь взаимодействующие друг с другом частицы. Квантовая система при этом не может рассматриваться как совокупность частиц, сохраняющих свою индивидуальность. Иными словами, квантовая статистика требует отказа от представления различимости частиц - это получило название принципа тождественности. В атомной физике две частицы одной природы считались тождественными. Однако эта тождественность не признавалась абсолютной. Так, две частицы одной природы можно было различать хотя бы мысленно.

В квантовой статистике возможность различить две частицы одинаковой природы полностью отсутствует. Квантовая статистика исходит из того, что два состояния системы, которые отличаются друг от друга лишь перестановкой двух частиц одинаковой природы, тождественны и неразличимы. Таким образом, основное положение квантовой статистики - принцип тождественности одинаковых частиц, входящих в квантовую систему. Этим квантовые системы отличаются от классических систем.

Во взаимодействии микрочасти важная роль принадлежит спину - собственному моменту количества движения микрочастицы. (В 1925 г. Д.Уленбеком и С.Гаудсмитом впервые было открыто существование спина у электрона). Спин д электронов, протонов, нейтронов, нейтрино и др. частиц выражается полуцелой величиной, у фотонов и пи-мезонов - целочисленной величиной (1 или 0). В зависимости от спина микрочастица подчиняется одному из двух разных типов статистики. Системы тождественных частиц с целым спином (бозоны) подчиняются квантовой статистике Бозе-Эйнштейна, характерной особенностью которой является то, что в каждом квантовом состоянии может находиться произвольное число частиц. Данный тип статистики был предложен в 1924 г. Ш.Бозе и затем усовершенствована Энштейном). В 1925 г. для частиц с полуцелым спином (фермионов) Э.Ферми и П.Дирак (независимо друг от друга) предложили другой тип квантовой статики, получивший имя Ферми-Дирака. Характерной особенностью этого типа статики является то, что в каждом квантовом состоянии может находиться произвольное число частиц. Это требование называется принципом запрета В.Паули, который был открыт в 1925 г. Статистика первого типа подтверждается при исследовании таких объектов, как абсолютно черное тело, второго типа - электронный газ в металлах, нуклоны в атомных ядрах и т.д.

Перейти на страницу: 1 2 3 4 5

Немного больше о технологиях >>>

Об ориентационной поляризации спиновых систем
В одной из наших предыдущих статей, посвященных термодинамике спиновых систем, была выявлена несостоятельность попыток свести к теплообмену процессы установления единой ориентации противоположно направленных ядерных спинов [1]. Несколько позднее было показано, что процессы упор ...

Наш дом — Вселенная
Вот дом, который построил Джек. Англ. народная песенка. Пер. С.Маршака Как точно написать свой адрес? Сначало просто: квартира, дом, улица, город, страна. Потом, чуть подумав: планета Земля, звезда Солнце, галактика Млечный Путь. Далее (по мере укрупнения масштаба и фан ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512