Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Принцип дополнительности

Возникновение и развитие квантовой теории привело к изменению классических представлений о структуре материи, движении, причинности, пространстве, времени, характере познания и т.д., что способствовало коренному преобразованию картины мира. Для классического понимания материальной частицы было характерно резкое ее выделение из окружающей среды, обладание собственным движением и местом нахождения в пространстве. В квантовой теории частица стала представляться как функциональная часть системы, в которую она включена, не имеющая одновременно координат и импульса. В классической теории движение рассматривалось как перенос частицы, остающейся тождественно самой себе, по определенной траектории. Двойственный характер движения частицы обусловил необходимость отказа от такого представления движения. Классический (динамический) детермизм уступил место вероятностному (статистическому). Если ранее целое понималось как сумма составляющий частей, то квантовая теория выявила зависимость свойств частицы от системы, в которую она включена. Классическое понимание познавательного процесса было связано с познанием материального объекта как существующего самого по себе. Квантовая теория продемонстрировала зависимость знания об объекте от исследовательских процедур. Если классическая теория претендовала на завершенность, то квантовая теория с самого начала развертывалась как незавершенная, основывающаяся на ряде гипотез, смысл которых вначале был далеко не ясен, а поэтому ее основные положения получали разное истолкование, разные интерпретации.

Разногласия выявились прежде всего по поводу физического смысла двойственности микрочастиц. Де Бройль вначале выдвинул концепцию волны-пилота, в соответствии с которой волна и частица сосуществуют, волна ведет за собой частицу. Реальным материальным образованием, сохраняющим свою устойчивость, является частица, поскольку именно она обладает энергией и импульсом. Волна, несущая частицу, управляет характером движения частицы. Амплитуда волны в каждой точке пространства определяет вероятность локализации частицы рядом с этой точкой. Шредингер проблему двойственности частицы решает по сути путем ее снятия. Для него частица выступает как чисто волновое образование. Иначе говоря, частица есть место волны, в котором сосредоточена наибольшая энергия волны. Интерпретации де Бройля и Шредингера представляли собой по сути попытки создать наглядные модели в духе классической физики. Однако это оказалось невозможным.

Гейзенбергом была предложена интерпретация квантовой теории, исходя (как было показано ранее) из того, что физика должна пользоваться только понятиями и величинами, основанными на измерениях. Гейзенберг поэтому и отказался от наглядного представления движения электрона в атоме. Макроприборы не могут дать описание движения частицы с одновременной фиксацией импульса и координат (т.е. в классическом смысле) по причине принципиально неполной контролируемости взаимодействия прибора с частицей - в силу соотношения неопределенностей измерение импульса не дает возможности определить координаты и наоборот. Иначе говоря, по причине принципиальной неточности измерения предсказания теории могут иметь лишь вероятностный характер, причем вероятность является следствием принципиальной неполноты информации о движении частицы. Это обстоятельство привело к выводу о крушении принципа причинности в классическом смысле, предполагавшим предсказание точных значений импульса и координаты. В рамках квантовой теории, таким образом, речь идет не об ошибках наблюдения или эксперимента, а о принципиальном недостатке знаний, которые и выражаются с помощью функции вероятности.

Интерпретация квантовой теории, осуществленная Гейзенбергом, была развита Бором и получила название копенгагенской. В рамках данной интерпретации основным положением квантовой теории выступает принцип дополнительности, означающий требование применять для получения в процессе познания целостной картины изучаемого объекта взаимоисключающие классы понятий, приборов и исследовательских процедур, которые используются в своих специфических условиях и взаимозаполняют друг друга. Данный принцип напоминает соотношение неопределенностей Гейзенберга. Если речь идет об определении импульса и координаты как взаимоисключающих и взаимодополняющих исследовательских процедур, то для отождествления этих принципов есть основания. Однако смысл принципа дополнительности шире, чем соотношения неопределенностей. Для того, чтобы объяснить устойчивость атома, Бор соединил в одной модели классические и квантовые представления о движении электрона. Принцип дополнительности, таким образом, позволил классические представления дополнить квантовыми. Выявив противоположность волновых и корпускулярных свойств света и не найдя их единства, Бор склонился к мысли о двух, эквивалентных друг другу, способах описания - волновом и корпускулярном - с последующем их совмещением. Так что точнее говорить о том, что принцип дополнительности выступает развитием соотношения неопределенности, выражающих связи координаты и импульса.

Перейти на страницу: 1 2 3 4 5

Немного больше о технологиях >>>

Молекулы-русалки
Эта история начинается с одного из многочисленных увлечений Бенджамина Франклина, выдающегося американского ученого и респектабельного дипломата. Будучи в 1774 году в Европе, где он улаживал очередной конфликт между Англией и Североамериканскими Штатами, Франклин в свободное вр ...

Усилители конструкция и эксплуатация
В настоящее время усилители получили очень широкое распространение практически во всех сферах человеческой деятельности: в промышленности, в технике, в медицине, в музыке, на транспорте и во многих других. Усилители являются необходимым элементом любых систем связи, радиовещани ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512