Определение размерности Хаусдорфа фракталов с циклически повторяющимися структурами
здесь: å - число различных структур; - число элементов в структуре; - число повторений структуры.
Произведя аналогичные рассуждения относительно правила, определяющего размер элементов структур, получим зависимость от числа структур и вариации размеров элементов структур:
.
Проанализируем влияние численности структур, участвующих в формировании фрактального образования, на размерность Хаусдорфа этого образования. Пусть имеются несколько фрактальных образований. Первое строилось с помощью одной структуры, состоящей из j элементов. Второе – с помощью трех структур, состоящих соответственно из j-1, j и j+1 элементов. Третье – с помощью пяти структур, состоящих соответственно из j-2, j-1, j ,j+1 и j+2 элементов. И так далее. На рис. 2 построен график зависимости размерности Хаусдорфа от числа структур. Из рисунка видно, что, чем больше разнообразность структур, тем меньше размерность.
Рис.3. Влияние на размерность Хаусдорфа числа различных элементов в структуре (k = 11). В точке n = 1 l = 10.
Рис. 3 иллюстрирует влияние на размерность Хаусдорфа вариации размеров элементов в структуре. С увеличением количества размеров элементов, растет размерность.
Анализ полученных результатов приводит к выводу, что вычисление размерности Хаусдорфа в сложных фрактальных образованьях осреднением числа или (и) длин элементов структур недопустимо. Прикладной интерес представляют фракталы с размерностью меньше размерности пространства.
Использование фракталов с циклически повторяющимися структурами позволяет легко получать самоподобные образование требуемой размерности, что необходимо в различных приложених.
Немного больше о технологиях >>>
Оборудование и технология эхо-импульсного метода ультразвуковой дефектоскопии
Двадцать первый век - век атома, покорения космоса,
радиоэлектроники и ультразвука. Наука об ультразвуке сравнительно молодая.
Первые лабораторные работы по исследованию ультразвука были проведены великим
русским ученым-физиком П. Н. Лебедевым в конце XIX, а затем
ультразвуком ...
Ошибка Лоренца
В
физике часто используются очевидные положения, которые представляются
достаточно ясными и не требуют последующего обоснования. Это не всегда оправдано,
поскольку есть случаи, приводящие к парадоксальным следствиям. Тогда приходится
возвращаться к анализу «очевидных положений» ...