Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Самый маленький в мире грузчик

Другой не менее известный биологический мотор, который тоже будет полезен нанотехнологам, - молекула белка кинезина. Это представитель другого класса линейных моторов. Среди механохимических преобразователей энергии, распространенных в живой природе, они играют важную роль. Эти белковые машины движутся вдоль полимерных нитей, используя в качестве "топлива" молекулы АТФ. К таким моторам относятся белки актомиозинового комплекса, входящего в состав сократительного аппарата мышц. Движение микроворсинок (жгутиков и ресничек бактерий и простейших) определяется взаимодействием другой пары моторных белков - динеина и тубулина. Смещение головок динеина относительно тубулиновых микротрубочек белков обеспечивает волнообразные движения микроворсинок. Среди большого числа моторных белков миозин скелетных мышц и кинезин из клеток мозга являются наиболее изученными молекулярными моторами. Несмотря на то, что функции миозина и кинезина в клетке различаются, они удивительно похожи по своему строению и механизмам действия.

Расскажем, как работает молекула кинезина. Совместно с микротрубками цитоскелета она выполняет транспорт веществ внутри клетки и перемещение везикул. Если провести аналогию с макромиром, то микротрубки играют роль рельсов, по которым перемещаются молекулы белков кинезина (вагоны), неся на себе полезный груз. Один конец этой молекулы прикрепляется к везикуле, которую необходимо транспортировать, а другой - к микротрубке, которая направляет движение. Молекулы кинезина выполняют работу практически во всех растениях и животных (см. рис. 4).

Молекула кинезина представляет собой димер, образованный двумя одинаковыми полипептидными цепями. Подобно молекуле миозина, с одной стороны каждой полипептидной цепи кинезина формируется глобулярная головка, соединенная со сравнительно длинным хвостом. Линейные размеры головки сравнительно невелики, они составляют 7,5 х 4,5 х 4,5 нм. Длина молекулы - 50 нанометров. Хвосты двух мономерных цепей сплетены вместе, а наклоненные в разные стороны головки образуют своеобразную рогатину, которая непосредственно взаимодействует с глобулярными мономерами микротрубочки, вдоль которой перемещается кинезин.

Рис. 4. Строение молекулы кинезина

Интересно то, что молекула "шагает" вдоль микротрубки (см. рис.5), делая 8-нанометровые шаги. На рисунке кинезиновый комплекс перемещает органеллу меланосому (ответственную за синтез меланина) вдоль микротрубки. Для того, чтобы так шагнуть, молекула использует в качестве топлива 1 молекулу АТФ. При этом сила, развиваемая одной молекулой кинезина, составляет величину 6 пН. Если бы такой мощностью в расчете на единицу массы обладали автомобильные моторы, то они могли бы легко разгонять машины до скоростей, существенно превышающих скорость звука. Коэффициент полезного действия кинезинового мотора также велик - примерно 50%.

Рис. 5. Перемещение кинезином меланосомы (клеточной органеллы) вдоль микротрубки

В процессе "ходьбы" молекула кинезина может расщепить за одну секунду до 100 молекул АТФ, переместившись на 800 нанометров. Работая в качестве индивидуального молекулярного извозчика, кинезин может совершать перемещения на очень большие расстояния (до 1 мм).

Рис. 6. Кинезиновый наноконвейер

Ученые из института им. Макса Планка попытались "приручить" кинезин вне клетки. Для этого они покрыли молекулами кинезина гладкую стеклянную поверхность, создав что-то вроде ковра, ворсинки которого представляли собой молекулы кинезина. Потом исследователи разместили на этой поверхности ряд микротрубок и микросфер. Исследователи добавили к среде раствор АТФ - и получился огромный "трубочный" конвейер. Если в клетке кинезин шагает вдоль микротрубки сам, то в искусственной системе молекула была жестко закреплена, и свободные концы молекул "шагали" по микротрубкам, передвигая их. Движения микротрубок можно увидеть на этом видео. Запись велась с помощью оптического микроскопа.

Перейти на страницу: 1 2

Немного больше о технологиях >>>

Применение световода на уроках физики
Школьник понимает физический опыт только тогда хорошо, когда он его делает сам. Но еще лучше он понимает его, если сам делает прибор для эксперимента. П.Л.Капица Физический эксперимент... Постановка его на уроке позволяет учителю не только подробно рассмотреть физические я ...

Вода - энергоноситель, способный заменить нефть.
Нефть, уголь и природный газ являются основными энергоносителями, заменитель которым еще не найден. Все они являются продуктами Солнца, за миллионы лет накопившиеся на Земле. Сжигание этих энергоносителей с целью получения энергии является основным фактором загрязнения окружающ ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512