Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Вода - энергоноситель, способный заменить нефть.

Нефть, уголь и природный газ являются основными энергоносителями, заменитель которым еще не найден. Все они являются продуктами Солнца, за миллионы лет накопившиеся на Земле. Сжигание этих энергоносителей с целью получения энергии является основным фактором загрязнения окружающей среды. Природные запасы углеродсодержащих энергоносителей, на образование которых ушли миллионы лет, стремительно истощаются. В связи с этим, по мере роста потребностей общества в энергии, проблема обеспечения энергией все болше обостряется. Существующие способы получения энергии, как тепловой, так и электрической, основанные на сжигании природных энергоносителей, являются губительными для биосферы Земли. Атомная энергетика имеет нерешенную проблему захоронения и утилизации опасных отходов. Все меньше надежд у ученых на успешную реализацию программы управляемого термоядерного синтеза. Решение этой задачи многократно уже отодвигалось на более поздние сроки и теперь видят ее решение не ранее 2050 года. Технологии аккумулирования солнечной энергии пока еще не получили широкого применения, поэтому они не могут выступать альтернативой сжиганию природных энергоносителей.

Как видим, мир еще не нашел экологически чистой энергии и не знает способы ее получения безопасные для биосферы несмотря на огромнейшие затраты на эти цели. Причиной является то, что поиски ведутся в традиционных направлениях, которые в рамках сложившихся представлений, могут привести лишь к небольшим "косметическим" доработкам существующих подходов и не способны вывести на прорывные решения. Прорывным можно считать такое решение, которое позволит найти неисчерпаемый источник энергии, способный заменить нефть, уголь и газ, но, в отличие от последних, не загрязняющий окружающую среду. Стремительное истощение природных энергоносителей выводит задачу поиска принципиально новых способов получения энергии на первый план.

Если проанализировать наиболее эффективные технологии получения энергии, используемые в настоящее время, то можно увидеть определенную закономерность. Суть ее состоит в следующем. На конечной стадии всей цепи энергетических преобразований в современных способах получения энергии появляется новое вещество. Причем, это вещество становится, как правило, более опасным для биосферы, чем исходный энергоноситель. Это является общим признаком для современных способов получения энергии. Это относится и к энергетике, основанной на сжигании природного топлива, и к атомной энергетике, и к ядерному синтезу. Мир уже свыкся с мыслью, что для получения энергии нужно воздействовать на вещество и на конечной стадии вместе с энергией получать, как неизбежное зло, новое вещество. Более того, такой путь считается чуть ли не единственно возможным. А так ли это? Задача состоит в том, чтобы найти новый энергоноситель и совершенно новые способы получения энергии, свободные от традиционной схемы: "вещество в начале энергопреобразваний – энергия и новое вещество в конце энергопреобразваний".

Очевидно, альтернативой существующим способам получения энергии могут стать только такие, в которых на конечной стадии энергетических преобразований не будет появляться опасное вещество или даже будет совсем отсутствовать вещество, как таковое. Такую задачу уже ставят перед собой ученые. Особенно большой интерес к проблеме новой энергии проявляет космическое агенство США NASA. NASA ставит такие задачи, которые, на первый взгляд, могли бы показаться фантастическими. В 1997 году было проведено заседание рабочей группы, на котором рассматривались новые подходы для достижения научного прорыва в космических исследованиях на основе создания двигателей, не требующих запасов горючего на борту. Рассматривались новые методы получения энергии, в том числе энергии физического вакуума, которые могли бы обеспечить научный прорыв в области создания ракетных двигателей, работающих на новых принципах [14, 15].

    Немного больше о технологиях >>>

    В поисках инерцоида
    Многие века люди относились к массивным телам как своеобразным складам движения – сколько в них вложишь, столько и вернешь. Но вот родилась дерзкая надежда превратить склады в источники: нельзя ли так пошевелить грузами на тележке, чтобы та поехала сама собой, за счет внутренни ...

    Исторический анализ технических систем в прогнозном проекте
    Приступая к прогнозному проекту обычно изучаешь опыт предшественников, обращаешься к корифеям. На наш взгляд, наиболее ценные советы можно получить в работе С. С. Литвина и В. М. Герасимова, посвященной дальнему прогнозированию [1]. Но, когда переходишь к практическим действиям ...

    Галерея

    Tехнологии прошлого

    Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

    Tехнологии будущего

    В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
    +7 648 434-5512