Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Синергетика – теория самоорганизации

Рис. 3. Неустойчивое состояние равновесия (точка O). Флюктуация выводит шарик из равновесия; в точке M и N – устойчивое состояние равновесия.

Этот процесс можно пояснить следующим примером. Представим себе маленький шарик в желобе, форма которого показана на рис.3. Если поставить его на вершину горба, в точку О, то в соответствии с законами механики он может оставаться на вершине (это тоже стационарное решение уравнений, описывающих движение шарика), но флюктуации выведут его из равновесия и он начнет двигаться. Постепенно из-за трения энергия шарика будет уменьшаться, и в конце концов он остановится на дне желоба в точке М или N. В какой именно точке он окажется, зависит от знака флюктуации, которая вывела шарик из равновесия. Роль точки О у нас играла термодинамическая ветвь, роль равновесных положений М и N – стационарные устойчивые решения, такие, как показаны на рис.2. Можно сказать, что причиной возникновения структур являются внутренние свойства системы, а поводом – вносимые флюктуации. Такое поведение характерно для многих нелинейных неравновесных систем.

Рис. 4. Возможный вид случайной функции F(t).

Флюктуации можно учесть, добавив в правую часть уравнения (2) случайные функции. Они могут отражать процессы, в детали которых на нашем уровне описания мы не вникаем. Отвлекаясь от их конкретного вида, приведем простейший пример случайной функции. Бросаем монету с интервалом времени Δt и считаем, что если в момент времени t выпадает орел, то F(t) = α, α << 1 δо момента t + Δt, если решка – F(t) = α; β момент времени t + Δt мы опять бросаем монету. Возможный вид функции, полученной таким образом, показан на рис.4. «Возможный» потому, что точно неизвестно, когда выпадает орел, а когда решка. Функция действительно случайная. И, бросая монету, читатели могут получить функцию нисколько не хуже нарисованной здесь.

Возможно, в необходимости учитывать флюктуации, которые, нарастая, могут изменить основные характеристики процессов, и кроется одно из важных отличий сложных систем от простых. Даже слабое воздействие на нелинейную систему в окрестности B0 может определить ее дальнейшую судьбу, в то время как вдали от В0 влияние этого воздействия не ощущается. Здесь мы сталкиваемся с резонансным возбуждением – воздействием, согласованным с внутренними свойствами нелинейной системы и сильно влияющим на нее.

По-видимому, в общем случае дело обстоит так: большинство реальных систем описывается нелинейными уравнениями. Если линеаризовать уравнения в их окрестности, получаются линейные соотношения, с которыми обычно и работают ученые. Но этот прием не годится в том случае, когда воздействия на систему очень интенсивны, а также если система открыта и далека от равновесия, т.е. как раз в тех случаях, которые в современной науке и технике представляют наибольший интерес. Их понимание безусловно требует нелинейного анализа, более сложного, трудоемкого, но дающего более полную и глубокую картину изучаемых явлений.

Почему этим работам уделяется большое внимание? Оглядимся вокруг. Можно сказать, что современная техника невозможна без колебательных, периодических и близких к ним нестационарных процессов. Ими удобно управлять, они позволяют в огромное число раз усиливать слабые сигналы, у них масса других достоинств. Может быть, по тому же пути шла природа, создавая сложные самоорганизующиеся системы. Не похож ли механизм «биологических часов» на колебательные процессы в модели брюсселятора? Эти вопросы пока ждут ответов.

Другая причина интереса к модели брюсселятора состоит в том, что она отражает общие черты многих систем, где возникают структуры и возможны явления самоорганизации. Необходимые условия такого поведения обычно формулируют следующим образом:

Система является термодинамически открытой, т.е. возможен обмен энергией, веществом и т.д. с окружающей средой.

Макроскопические процессы происходят согласованно (кооперативно, когерентно). В рассмотренных нами примерах такое согласование обеспечивали диффузионные процессы.

Отклонения от равновесия превышают критическое значение, т.е. рассматриваются состояния, лежащие вне термодинамической ветви.

Процессы рассматриваются в таком диапазоне параметров, когда для их описания необходимы нелинейные математические модели.

Перейти на страницу: 1 2 3 4 5 

Немного больше о технологиях >>>

Новая концепция электромобиля
Электромобиль – транспортное средство, ведущие колеса которого приводятся от электромотора питаемого электробатареей, появился впервые в 1838 году в Англии. Электромобиль существенно старше автомобиля с двигателем внутреннего сгорания. Поначалу он опережал автомобиль по скорост ...

Исторический анализ технических систем в прогнозном проекте
Приступая к прогнозному проекту обычно изучаешь опыт предшественников, обращаешься к корифеям. На наш взгляд, наиболее ценные советы можно получить в работе С. С. Литвина и В. М. Герасимова, посвященной дальнему прогнозированию [1]. Но, когда переходишь к практическим действиям ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512