Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Синергетика – теория самоорганизации

А – (B + 1)X + X2Y = 0, BX – X2Y = 0

Ее единственное решение – это Х = А, Y = B/А. В наших рассуждениях оно будет играть особую роль. Будем менять концентрацию вещества B и начальные распределения концентраций X(х, 0), Y(x, 0) и смотреть, как меняется поведение решения. В этом нам опять поможет ЭВМ.

Если концентрация вещества B невелика, то независимо от начальных данных через определенное время установятся концентрации Х(x, t) = A, Y(x, t) = B/A. Оказывается, такое замечательное решение (устойчивое стационарное, на которое независимо от начальных данных выходят изучаемые распределения параметров при небольших внешних воздействиях) есть у многих нелинейных систем. Оно получило название термодинамической ветви (в случае брюсселятора это решение Х = А, Y = B/A).

На первый взгляд кажется, что такая картина будет иметь место при любых В. Однако это не так. Если зафиксировать начальные концентрации Х(х, 0), Y(х, 0) и увеличивать значение B, то мы увидим, что начиная с некоторого критического значения B происходит выход на немонотонные стационарные распределения концентраций, например такие, как показаны на рис.1 и 2.

Рис. 1. Стационарные диссипативные структуры, возникающие в модели брюсселятора.Параметры нелинейной среды: А = 2; B = 4,6; D1 = 1,6·10–3; D2 = 8,0·10–3

Рис. 2. Распределение концентрации X.Два различных типа структур, возможных в одной и той же нелинейной среде при задании различных начальных данных. Параметры нелинейной среды: A = 2; B = 4,6; D1 = 1,6·10–3; D2 = 8,0·10–3.

Именно для таких стационарных неоднородных по пространству устойчивых решений, возникающих вне термодинамической ветви, И.Пригожиньм и было впервые введено понятие диссипативной структуры.

Прежде чем разбираться подробнее в свойствах таких решений, подчеркнем неожиданность полученного результата. Кажется очевидным, что в реакторе распределение реагирующих веществ по горизонтали (если сила тяжести направлена по вертикали) будет однородным по пространству. Модель брюсселятора показывает, что это не так: в среде могут возникать структуры, одни реагенты могут оказаться сосредоточены в одних частях реактора, другие – в других. Здесь встает целый круг вопросов:

как меняют структуры характерные времена реакций?

какая концентрация вещества является оптимальной?

И много других. Такие вопросы возникают при решения ряда задач химической технологии.

Вернемся к модели брюсселятора. Стационарное решение Х = А, Y = B/A удовлетворяет краевой задаче при любых B. Следовательно, при B > В0 появляется несколько стационарных решений. Как говорят математики, происходит ветвление решений, или бифуркация. Аппарат теории бифуркаций, интенсивно развиваемый в настоящее время, широко используется в синергетике.

Мы зафиксировали начальные концентрации и меняли В. Поступим по-другому: зафиксируем какое-нибудь значение В > В0 и будем менять профили начальных концентраций X(х, 0), Y(x, 0). При некоторых значениях B можно наблюдать интересный эффект: при одних начальных данных имеет место выход на один стационар (стационарное решение), при других – на другой. Два стационара, возможные при одних и тех же параметрах, показаны на рис.2. Причем выход на один и тот же стационар происходит с целого класса начальных концентраций, т.е. так же, как в модели тепловых структур здесь имеет место «забывание» деталей начальных данных. А что будет, если поставить систему в положение буриданова осла – задать при тех же значениях начальные условия, приводящие к однородному решению Х(х, 0) = А, Y(x, 0) = B/A, соответствующему термодинамической ветви?

Роль флюктуаций

Если решение Х = А, Y = В/А «поставлено» идеально точно, то оно меняться не будет. Однако реально расчеты на ЭВМ дают другую картину. Даже очень малые отклонения, которые, как правило, всегда имеют место, быстро нарастают, и далее происходит выход на один из неоднородных устойчивых стационаров. Такие отклонения, называемые флюктуациями, всегда есть в физических, химических и биологических системах. Расчеты на ЭВМ показывают, что вносимые флюктуации в отличие от равновесных процессов, изучаемых классической термодинамикой, определяют всю дальнейшую судьбу нелинейной системы. Термодинамическая ветвь здесь неустойчива.

Перейти на страницу: 1 2 3 4 5

Немного больше о технологиях >>>

Озонолиз как способ очистки и получения новых полезных нефтепродуктов
В первой части обзора [1] были описаны изменения химической природы и свойств компонентов нефти при озонировании и последующем разрушении продуктов реакции. Озонолиз нефтяного сырья может быть с успехом использован не только для увеличения объемов производства дистиллятных мото ...

О вращении электрона
Как известно [1], основанием для введения в физику квантовых постулатов в начале XX века послужило абсолютное несоответствие результатов ряда фундаментальных экспериментальных открытий в области микромира устоявшимся воззрениям на предполагаемые свойства объектов микромира. А и ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512