Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Вариационные задачи с разрывным интегрантом

Стремясь иметь для примера негладкий интегрант, Кларк модифицировал [3, с.178] задачу Дидоны следующим образом. Он полагает, что для некоторого a >0 земля в области x>a худшего качества и доход с нее составляет только половину дохода с земли в области x<a .

Рис.2. Участок Дидоны с канавой

Доход Д с огороженного участка, ограниченного кривой x(t), равен

(П.1)

где gn[x(t)] = {x(t), если; (x+a )/2, если } .Следует максимизировать значение дохода Д (интеграла (П.1)) при наличии ограничений

(П.2)

. (П.3)

Далее Кларк использует методы негладкого анализа для решения модифицированной задачи Дидоны. Применение этих методов ограничивается негладкими интегрантами и абсолютно непрерывными экстремалями.

Для частичной иллюстрации возможностей предложенного нами метода решения задач с разрывным интегрантом будем полагать, что участок Дидоны параллельно береговой линии пересекает канава шириной b -a . Один берег канавы проходит по линии x(t)=a ., а другой - по линии x(t)=b . Участок канавы, ограниченный берегами и веревкой (рис.2), никакого дохода не приносит, и интегрант выглядит так:

(П.4)

Веревка ограничивает канаву, пересекая ее, но разорвать веревку Дидона не может, поэтому изопериметрическое условие (П.3) остается в силе. Требуется максимизировать доход с участка, расположенного по берегам канавы, ограниченного береговой линией и веревкой.

Представим g[x(t)] с помощью единичной функции включения (1.2) в виде

В уравнение Эйлера простейшей вариационной задачи (2.6) входят производные интегранта по x и по. Вычислим эту производную

Производя сокращения и учитывая свойства d -функции [7], находим

или

(П.5)

С учетом изопериметрического условия (П.3), получим дифференциальное уравнение для экстремали

(П.6)

где l - неопределенный пока множитель Лагранжа [7].

Уравнение (П.6) при и ограничениях (П.2) имеет интегралом окружность

(П.7)

где C = ¦ (l 2 /a2-1)1/2, симметрично расположенную относительно оси Оx (рис.2). Выразим длину веревки Дидоны через параметры задачи a , b , g и неизвестный коэффициент l .

В горизонтальной полосе 0<x<a и центр соответствующей окружности располагается ниже оси Оt (иначе интегральные дуги окажутся вне вертикальной полосы -1<t<1), откуда для длины дуги получим

(П.8)

При x>b и при отыскании максимума функционала (П.1) в случае g >1 (или g <1) центр окружности, содержащей интегральную дугу, будет расположен выше (или ниже) оси Оt. Для длины дуги получим

(П.9)

В полосе a <x<b и интегральная линия имеет вид отрезков прямой, соединяющей концы дуг и с концами дуги. При разных значениях параметра g может быть разная ориентировка этих отрезков. В частности, они могут быть параллельны оси Оy ()или наклонены. Длина отрезка определяется выражением

или

Перейти на страницу: 1 2 3

Немного больше о технологиях >>>

Новый подход к методам химической очистки призабойной зоны ствола скважины при заканчивании открытым стволом
В скважинах, где традиционные методы их заканчивания непригодны по геолого-техническим и экономическим соображениям, в последние годы все больше используются современные системы заканчивания скважин открытым стволом. Проведенный авторами анализ применимости таких систем имеет н ...

Применение световода на уроках физики
Школьник понимает физический опыт только тогда хорошо, когда он его делает сам. Но еще лучше он понимает его, если сам делает прибор для эксперимента. П.Л.Капица Физический эксперимент... Постановка его на уроке позволяет учителю не только подробно рассмотреть физические я ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512