Обобщенный принцип наименьшего действия
Введены континуально многозначные функции, позволяющие адекватно описывать физические задачи. Показано их отличие от разрывных функций. Сформулирована и решена вариационная задача для функционалов с разрывным интегрантом, зависящих от линейных интегральных операторов, действующих на искомую оптимизируемую функцию, причем ядро оператора и оптимизируемая функция могут быть континуально непрерывными. С помощью таких операторов можно адекватно описывать распределенные частицы.
Хорошо известный в физике принцип наименьшего действия [1] основан на классическом вариационном исчислении, когда функционал зависит от экстремали и ее производных, применим только для нейтральных частиц. В заметке [2] показано, что для заряда ускорение запаздывает по отношению к возмущающей силе за счет лоренцевых сил трения, т.е. для заряда существует некоторая переходная импульсная характеристика, а движение заряда можно описать интегральным оператором. Поэтому для зарядов, когда нельзя связать значение ускорения в данный момент со значением возмущения в тот же (или другой) момент, принцип наименьшего действия неприменим. Для таких задач требуется другой математический аппарат. Обобщенный принцип наименьшего действия основан на методах обобщенного вариационного исчисления. Рассмотрим его.
- Континуально многозначные функции
- Вариационные задачи с разрывным интегрантом
- Вариационная задача поиска оптимального оператора
Немного больше о технологиях >>>
Судьба термоядерного синтеза
Идея
создания термоядерного реактора зародилась в 1950-х годах. Тогда от нее было
решено отказаться, поскольку ученые были не в состоянии решить множество
технических проблем. Прошло несколько десятилетий прежде, чем ученым удалось
«заставить» реактор произвести хоть сколько-ни ...
Микросхемотехника
Еще несколько лет назад различные
электронные устройства собирали из отдельных элементов – электронных ламп,
реле, трансформаторов, резисторов, конденсаторов, – долго и ненадежно, да и
размеры аппаратуры получались весьма внушительными. Например, электронная
вычислительная маши ...





