Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Две стороны научных теорий

Структура научных теорий естествознания и функции научных теорий прямо или косвенно связаны с причинным объяснением явлений материального мира. Если обратиться к структурной модели причинности, то можно выявить два характерных момента, две важные стороны, которые так или иначе связаны с функциями научных теорий.

Первая касается описания причинных связей и отвечает на вопрос: как, в какой последовательности? Ей соответствует любая ветвь частного следствия, связывающая обусловленные состояния. Она дает не только описание перехода объекта из одного состояния в другое, но описывает и охватывает всю причинную цепь как последовательность связанных и обусловленных состояний, не вдаваясь глубоко в сущность, в источник изменения состояний звеньев цепи.

Вторая сторона отвечает на вопрос: почему, по какой причине? Она, напротив, дробит причинно-следственную цепь на отдельные элементарные звенья и дает объяснение изменении состоянии, опираясь на взаимодействие. Это объясняющая сторона.

Две эти стороны прямо связаны с двумя важными функциями научной теории: объясняющей и описательной. Поскольку принцип причинности лежал и будет лежать в основе любой естественнонаучной теории, теория всегда будет выполнять эти две функции: описание и объяснение [14].

Однако не только в этом проявляется методологическая функция принципа причинности. Внутреннее структурирование самой теории также связано с этим принципом. Возьмем, к примеру, классическую механику с ее тремя традиционными разделами: кинематикой, динамикой и статикой. В кинематике силовые взаимодействия не рассматриваются, а идет описание (физическое и математическое) видов движения материальных точек и материальных объектов. Взаимодействие подразумевается, но оно отходит на второй план, оставляя приоритет описанию сложных связанных движений через характеристики их состояний. Разумеется, этот факт не может служить поводом для классификации кинематики как непричинного способа описания, поскольку кинематика отражает эволюционную сторону причинно-следственных отношений, связывающих различные состояния.

Динамика – теоретический раздел, который включает в себя полное причинно-следственное описание и объяснение, опираясь на структурную модель причинно-следственных отношений. В этом смысле кинематика может считаться подразделом динамики.

Особый интерес с точки зрения причинности представляет статика, в которой следственные цепи вырождены (отсутствуют), и мы имеем дело только со связями и взаимодействиями статического характера. В отличие от явлений объективной реальности, где не существует абсолютно устойчивых систем, статические задачи – идеализация или предельный случай, допустимый в частнонаучных теориях. Но принцип причинности справедлив и здесь, поскольку не только решать статические задачи, но и понять сущность статики без применения «принципа виртуальных перемещений» или родственных ему принципов невозможно. «Виртуальные перемещения» непосредственно связаны с изменением состояний в окрестности состояния равновесия, т.е. в конечном счете с причинно-следственными отношениями.

Рассмотрим теперь электродинамику. Иногда ее отождествляют только с уравнениями Максвелла. Это неверно, поскольку уравнения Максвелла описывают поведение волн (излучение, распространение, дифракцию и т.д.) при заданных граничных и начальных условиях. Они не включают в себя описание взаимодействия как взаимного действия. Принцип причинности привносится вместе с граничными и начальными условиями (запаздывающие потенциалы). Это своеобразная «кинематика» волновых процессов, если подобное сравнение позволительно. «Динамику», а с ней и причинность, вносит уравнение движения Лоренца, учитывающее реакцию излучения заряда. Именно связь уравнений Максвелла и уравнения движения Лоренца обеспечивает достаточно полное причинно-следственное описание явлений электромагнетизма. Подобные примеры можно было бы продолжить. Но и приведенных достаточно, чтобы убедиться, что причинность и ее структурная модель находят отражение в структуре и функциях научных теорий.

Если в начале нашей работы мы шли от эволюционной модели причинности к структурной, то теперь предстоит обратный путь от структурной модели к эволюционной. Это необходимо, чтобы правильно оценить взаимную связь и отличительные особенности эволюционной модели.

Уже в неразветвленной линейной причинно-следственной цепи мы вынуждены отказаться от полного описания всех причинно-следственных отношений, т.е. не учитываем некоторые частные следствия. Структурная модель позволяет неразветвленные линейные причинно-следственные цепи свести к двум основным типам.

а) Объектная причинная цепь. Образуется тогда, когда мы выделяем какой-либо материальный объект и следим за изменением его состояния во времени. Примером могут служить наблюдения за состоянием броуновской частицы, или за эволюциями космического корабля, или за распространением электромагнитной волны от антенны передатчика до антенны приемника.

Перейти на страницу: 1 2 3

Немного больше о технологиях >>>

Наш дом — Вселенная
Вот дом, который построил Джек. Англ. народная песенка. Пер. С.Маршака Как точно написать свой адрес? Сначало просто: квартира, дом, улица, город, страна. Потом, чуть подумав: планета Земля, звезда Солнце, галактика Млечный Путь. Далее (по мере укрупнения масштаба и фан ...

Влияние гигантских волн на безопасность морской добычи и транспортировки углеводородов
Бурное развитие космических и информационных технологий последних лет позволило получить неопровержимые свидетельства, подтверждающие существование гигантских волн (или так называемых «волн-убийц») в океане. География распространения, частота появления и большая разрушительная ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512