Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Теория теплорода и механическая концепция теплоты

Практические потребности актуализировали исследования в области тепловых явлений. Машиностроение и химическая промышленность нуждались в методах точного измерения тепловых величин, прежде всего измерения температуры. Потребности метеорологии, химии. медицины также требовали совершенствования измерения температуры. Развитие термохимии (Фарангейт, Делиль, Ломоносов, Реомюр, Цельсий) основывалось на использовании теплового расширения тел. Совершенствование паровой машины Ньюкомена, использовавшейся более полувека без изменений, требовало создания количественной теории тепловых явлений.

Дж.Блэк, изучая природу теплоты, установил, что различные виды вещества нагреваются в разной степени одним и тем же количеством теплоты, что позволило ему выявить теплоемкость различных видов вещества, т.е. количество теплоты, которое необходимо подвести к телу, чтобы повысить его температуру на один градус по Цельсию или Кельвину. Он установил, что при таянии льда и снега в течение определенного времени они поглощают тепло, не становясь при этом теплее. Это позволило ему обнаружить скрытое (латентное) состояние теплоты.

Блэк понимал теплоту как некую материальную субстанцию ("субстанцию теплоты"). А. Лавуазье называл ее теплородом. Попытки взвесить ее оказались неудачными, поэтому теплоту стали рассматривать как особого рода невесомую неуничтожаемую жидкость, способную перетекать от нагретых тел к холодным. Лавуазье считал, что подобная концепция была в полном соответствии с его идеей получения теплоты с помощью химических соединений. Увлечение этой концепцией оказалось столь велико, что кинетическая теория теплоты, в рамках которой теплота представлялась как определенный вид движения частиц, отступила на второй план, несмотря на то, что ее разделяли Ньютон, Гук, Бойль, Бернулли, Ломоносов.

Почему же концепция теплорода все-таки утвердилась, хотя и на время? П.С.Кудрявцев дает следующее объяснение. Для физического мышления XVIII века было характерно оперирование различными субстанциями - электрическими, магнитными, световыми, тепловыми. Свет, электричество, магнетизм, теплоту научились измерять. Это позволило уподобить невесомые феномены обычным массам и жидкостям, что способствовало развитию эксперимента и накоплению необходимых фактов. Иначе говоря, концепция невесомых жидкостей оказалась необходимым этапом в развитии физических концепций.[3]

Немного больше о технологиях >>>

Стратегия «золотой середины»
Выработанная веками народная мудрость, правило поведения или закон природы? Ниже я постараюсь показать, что это такой же универсальный закон природы как, скажем, закон всемирного тяготения. Понятие золотой середины далеко не ново. О нем писали еще Конфуций (551...479 до н.э. ...

Колумбия ожидание мира
«Мы — колумбийцы — выжили в таких трудных географических условиях — и горы, и болота. Мы не сломались, несмотря на десятилетия непрекращающейся войны. Мы продолжаем работать и радоваться жизни. Война — это как явление природы, как ураган, ему нужно сопротивляться!» Не знаю, к ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512