Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Разработка основ классической физики

б) Законы классической механики

Если кинематика изучает движение геометрического объекта (т.е. не обладающего никакими свойствами материального тела, кроме свойства занимать определенное место в пространстве и изменять это положение с течением времени), то динамика изучает движение реальных тел под действием приложенных к ним сил, т.е. под действием других тел. Установленные Ньютоном три закона механики лежат в основе динамики. Непосредственно их можно применять к простейшему случаю движения, когда движущееся тело рассматривается как материальная точка, т.е. когда размер и форма тела не учитывается и когда движение тела рассматривается как движение точки, обладающей массой. В кипятке для описания движения точки можно выбрать любую систему координат, относительно которой определяются характеризующие это движение величины. За тело отсчета может быть принято любое тело, движущееся относительно других тел. В динамике имеют дело с инерциальными системами координат, характеризуемыми тем, что относительно них свободная материальная точка движется с постоянной скоростью. Инерциальной системой отсчета называют такую, в которой справедлив закон инерции: материальная точка, на которую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения. Любая система отсчета , движущаяся относительно инерциальной системы отсчета, будет также инерциальной. (Все инерциальные системы отсчета равноправны, т.е. во всех таких системах законы физики одинаковы.)

Установить инерциальную систему координат с абсолютной точностью невозможно, поскольку для этого надо найти тело, на которое не действуют другие тела. За таковую нельзя принимать не только системы, связанные с Землей и Солнцем, но и даже с центром Галактики. Следовательно, понятие инерциальной системы координат есть абстракция, которая используется (как и всякое абстрактное понятие) в применении к физическим объектам с определенной степенью точности.

Закон инерции впервые был установлен Галилеем для случая горизонтального движения: когда тело движется по горизонтальной плоскости, то его движение является равномерным и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца. Ньютон дал более общую формулировку закону инерции как первому закону движения: всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние. Важно отметить, что недостатком данной формулировки закона являлось то, что в ней не содержалось указания на необходимость отнесения движения к инерциальной системе координат. Дело заключается в том, что Ньютон не пользовался понятием инерциальной системы координат - вместо этого он вводил понятие абсолютного пространства (однородного и неподвижного), с которым и связывал некую абсолютную систему координат, относительно которой и определялась скорость тел. Когда бессодержательность абсолютного пространства как абсолютной системы отсчета была выявлена, закон инерции стал формулироваться иначе: относительно инерциальной системы координат свободное тело сохраняет состояние покоя или равномерного прямолинейного движения.

Второй закон механики гласит: произведение массы тела на его ускорение равно действующей силе, а направление ускорения совпадает с направлением силы. Такова его современная формулировка. Ньютон сформулировал его иначе: изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует. Т.е. Ньютон в формулировке второго закона оперирует понятием количества движения, понимаемым как мера движения, пропорциональная массе и скорости. Количество движения - величина векторная (Ньютон учитывал направление движения при формулировании правила параллелограмма скоростей).Но это понятие в истории науки не удержалось (и сейчас заменено понятием импульса), поскольку было неясно, чем измерять движение. Декарт количество движения измерял произведением массы на скорость, Лейбниц - произведение массы на квадрат скорости (называя количество движения живой силой). Между сторонниками первого и второго возникла дискуссия. Даламбер показал эквивалентность обеих мер измерения (если, например, тело тормозится под действием силы, то тормозящая сила определяется количеством движения mv, если известно время торможения, и выводится из mv2/2, если известен путь торможения). Истинная суть обеих мер движения будет выяснена позже, когда будет открыт закон сохранения энергии.

Перейти на страницу: 1 2 3 4 5 6

Немного больше о технологиях >>>

Проблемы квазистатической электродинамики
В работах [1], [2] мы показали, что условием выполнения градиентной инвариантности (эквивалентность калибровки Лоренца и кулоновской калибровки) является жесткое ограничение на источники полей в уравнениях Максвелла. Заряды и токи в этих уравнениях должны перемещаться со скорос ...

Обзор биологических наномоторов
Многие молекулярные наномашины, давно работающие в живых организмах, могут послужить первыми строительными кирпичиками будущих нанороботов. Причем таких "моторов" в природе достаточно много. В этой статье мы расскажем об основных биомоторах и их возможном применении в ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512