Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Отступление: немного о случайных функциях.

Поскольку сейчас речь пойдет о случайной (хаотической) внешней силе, полезно предварительно обсудить этот термин детально.

Итак, что такое случайная величина, а точнее, применительно к нашей задаче - хаотично меняющаяся во времени функция? К примеру, являются ли функции, изображенные на рис.2а, случайными? Что является настоящим шумом, а что - смесью периодического сигнала с шумом? Математика, а точнее, ее ветвь под условным названием "Теория сигнала", предоставляет четкие ответы на эти вопросы. Здесь мы опишем лишь один из подходов, а именно, как с помощью преобразования Фурье отделить периодический сигнал от шума.

Пусть у нас есть функция y(t), которая как-то колеблется относительно нуля. Примеры таких функций как раз и представлены на рис.2а. Поскольку y(t) колеблется около нуля, то ее среднее значение

T

< y(t)> = тy(t)dt ~ 0.

0

Здесь T - полное время наблюдения сигнала; мы будем считать, что T гораздо больше, чем характерные периоды колебаний. Символ "~ 0" означает "много меньше произведения амплитуды на T". В дальнейшем, величины, взятые в такие угловые скобки, будут означать усреднение по времени в виде представленного здесь интеграла.

Давайте теперь усредним y(t), домноженную на cos(wt) с некоторой частотой w. Для разных w мы будем при интегрировании получать разные значения. Другими словами, мы получим некую функцию, зависящую от w:

f(w) = <y(t)cos(wt)>.

Эта функция называется фурье-образом исходного сигнала y(t), а переход от переменной t к переменной w и есть преобразование Фурье.

Глядя на фурье-образ функции, можно определить, присутствует ли в сигнале какая-либо периодическая составляющая, или же это чистый шум. Действительно, пусть наш сигнал - это чистый косинус с частотой w0: y(t) = acos(w0t).

Тогда, при вычислении мы получим f(w) ~ 0 для любых w, не равных w0, и большую величину aT/2 при w=w0. Фурье-образ f(w) в этом случае будет выглядеть, как показано на рис.2 в верхнем ряду.

Если же наш сигнал есть чистый шум, то интеграл будет давать некую, приблизительно постоянную величину для любых значений w. Это и есть признак того, что перед нами так называемый "белый шум", т.е. шум, в котором равноправно присутствуют все частоты (рис.2, средний ряд). (На самом деле, надо, конечно, работать аккуратнее, а именно, усреднять и с косинусом, и с синусом, и выделять амплитуду и фазу фурье-образа, но для наших целей это непринципиально.)

Если же теперь смешать шум с периодическим сигналом, то фурье-образ будет выглядеть, как в нижнем ряду рис.2. Мы увидим, что над ровным фурье-образом белого шума будет возвышаться некая "горка". Ее положение и высота позволят определить частоту и амплитуду периодической компоненты сигнала, спрятанной в шуме. Важно еще и то, что благодаря фурье-преобразованию можно детектировать периодический сигнал, даже если его амплитуда гораздо меньше амплитуды шума.

Немного больше о технологиях >>>

Основные концепции классической физики XIX века
Становление классического естествознания Социально-экономические и политические условия развития науки в XIX веке в разных странах не были одинаковыми. И хотя эти условия не всегда благоприятствовали развитию науки, для XIX века в целом характерен бурный рост научных ...

Явления, обусловленные движением Земли относительно мирового эфира
Эйнштейн предполагал, что все попытки обнаружить движение Земли относительно мирового эфира оказались безуспешными. Безуспешными оказались попытки обнаружить «эфирный ветер», возникающий при движении Земли относительно мирового эфира вследствие полного увлечения эфира атмосферо ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512