Интерпретация фотоэффекта
Наиболее приемлемая интерпретация экспериментальных зависимостей фотоэффекта была предложена А. Эйнштейном в 1905 году, за что он получил Нобелевскую премию [1], [2], [3]. Он сделал это в отсутствии закона формирования спектров атомов и ионов. Теперь этот закон открыт, и мы можем проверить правильность его интерпретации и возможность более глубокого понимания фотоэффекта [4], [5], [6], [7].
Математическая модель, предложенная А. Эйнштейном для интерпретации экспериментальных зависимостей фотоэффекта, имеет вид [3]:
Ek = hν – W, |
(1) |
где Ek – кинетическая энергия фотоэлектрона, испускаемого фотокатодом; hν – энергия фотона, но какого именно, в работах [1], [2], [3] не поясняется; W – работа выхода фотоэлектрона представляет собой константу, не зависящую от частоты [1], [2], [3].
Экспериментальные зависимости фотоэффекта представлены на рис. 1 [2].
Рис. 1. Зависимость фототока от интенсивности света: а) при постоянной его частоте; б) при разной частоте
Фототок возникает в цепи: фотокатод – коллектор. Если фотокатод облучать монохроматическим светом (рис. 1а), то величина потенциала –V, задерживающего фотоэлектроны, выходящие из фотокатода, не зависит от интенсивности света. При этом увеличение интенсивности света увеличивает фототок и не изменяет величину задерживающего потенциала, а значит и кинетическую энергию фотоэлектронов. При увеличении частоты света, падающего на фотокатод, величина отрицательного потенциала V, задерживающего фотоэлектроны, увеличивается (рис. 1б).
Поскольку величина задерживающего отрицательного потенциала V определяется кинетической энергией Ek электронов, излучаемых фотокатодом под действием светового облучения, то из зависимости, показанной на рис. 1б, следует, что при увеличении частоты фотонов, облучающих фотокатод, кинетическая энергия Ek испускаемых им фотоэлектронов увеличивается.
Попытаемся найти связь уравнения (1) А. Эйнштейна с математической моделью закона формирования спектров атомов и ионов (2). Нами уже показано, что математическая модель, описывающая спектры многоэлектронных атомов и ионов, имеет вид [4], [10], [12]:
Eph = Ei – E1/n2, |
(2) |
где Eph – энергия фотона, поглощаемого или излучаемого электроном; Ei – энергия ионизации электрона; E1 – энергия связи электрона с ядром атома, соответствующая его первому энергетическому уровню; n = 2, 3, 4 – главное квантовое число.
Соотношение (2) следует из экспериментальной спектроскопии, поэтому оно является математической моделью закона формирования спектров атомов и ионов. Эйнштейновское уравнение (1) также описывает аналогичный процесс поглощения фотонов электронами. Это дает нам основание предположить идентичность уравнений (1) и (2) и однозначность их интерпретации. Действительно, из приведенных уравнений следует
Ek = Eph. |
(3) |
Это значит, что если электрон теряет связь с ядром атома, то его кинетическая энергия Ek оказывается равной энергии Eph поглощенного фотона. Далее
hν = Ei. |
(4) |
Из этого явно следует, что величина энергии hν в уравнении (1) является энергией ионизации Ei электрона, излучаемого материалом фотокатода. Из уравнений (1) и (2) также следует
W = E1/n2 = Eb. |
(5) |
Новое прояснение: работа выхода фотоэлектрона W равна энергии связи электрона E1/n2 в момент пребывания его на определенном энергетическом уровне в атоме или молекуле.
Экспериментальные исследования фотоэффекта обычно проводят с фотокатодами из щелочных металлов [1]. Например, известно что, работа выхода фотоэлектрона с литиевого фотокатода равна W = 2,4 эВ [1]. Энергия ионизации этого электрона равна Ei = 5,392 эВ, а энергия связи его с ядром, соответствующая первому энергетическому уровню, – E1 = 14,05 эВ [4]. Учитывая это, и используя математическую модель закона формирования спектров атомов и ионов (2), получим теоретический спектр этого электрона Eph (теор.), который полностью совпадает с экспериментальным Eph (эксп.) спектром (табл. 1). При этом формула (5) позволяет рассчитать энергии Eb связи этого электрона с ядром атома (по Эйнштейну работу выхода), соответствующие всем (n) энергетическим уровням этого электрона [4].
Немного больше о технологиях >>>
Электрические цепи с бинарными потенциалами
Рассматриваются
электрические цепи c линейными элементами и диодами, не содержащие
транзисторов. Все потенциалы в этих цепях принимают только два значения.
Анализируются требования, которым должны удовлетворять такие цепи.
Устанавливается соответствие между такими цепями и схем ...
Стратегия «золотой середины»
Выработанная
веками народная мудрость, правило поведения или закон природы? Ниже я
постараюсь показать, что это такой же универсальный закон природы как, скажем,
закон всемирного тяготения.
Понятие
золотой середины далеко не ново. О нем писали еще Конфуций (551...479 до н.э. ...