Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Вездесущие неустойчивости

Если физическая система находится в равновесии, знать один этот факт недостаточно, чтобы предсказать ее поведение. Необходимо выяснить устойчиво ли равновесие, нарушается оно или нет при случайных внешних воздействиях, которых в природе не избежать. В физике сталкиваются с неустойчивостями разного типа и различной природы. Поведение неустойчивых систем интересней и неожиданней поведения устойчивых систем: зачастую неустойчивость приводит не просто к потере равновесия, но к проявлению качественно новых физических эффектов – например, к переходу вещества из одного состояния в другое или к самопроизвольному зарождению порядка в хаотической среде. Некоторые виды неустойчивости можно изучать на простых опытах.

Легко наблюдать развитие неустойчивости при нагревании током тонкой проволоки. Количество тепла, выделяющееся на данном участке проволоки, прямо пропорционально его сопротивлению, а сопротивление металла растет с повышением его температуры, что вызывает еще больший нагрев. Такая положительная обратная связь приводит к неравномерности накала: если в какой-то точке проволока случайно нагреется сильнее, то сопротивление там возрастет и тепла выделится больше, чем в соседних местах (общее сопротивление проволоки изменится слабо, ток через нее можно считать прежним). Дополнительное тепло еще сильней нагреет горячий участок проволоки, так что разница температур будет нарастать и нарастать.

Для опыта возьмите волосок перегоревшей лампочки мощностью 40 или 60 ватт и батарейку напряжением 4,5В. Положив волосок на лист белой бумаги, коснитесь его краев проводами, подключенными к батарее. Постепенно сдвигая провода и уменьшая длину включенной в цепь части волоска, найдите такое положение, при котором волосок раскалится докрасна. Вы заметите, что он раскалится не весь, а лишь на некоторых участках – чаще всего в местах изгиба, где вольфрам деформирован и уже обладает повышенным электрическим сопротивлением. Следы раскаленных участков останутся на бумаге в виде темных подпалин.

Может возникнуть вопрос: почему такая неустойчивость не проявляется в обычных электрических цепях? Почему не раскаляются отдельные части шнура от утюга или телевизора? И почему волосок не расплавляется – ведь его температура, непрерывно повышаясь, должна в конце концов превысить температуру плавления? Оказывается, кроме рассмотренной положительной обратной связи, имеется и стабилизирующая отрицательная обратная связь: чем сильней нагревается проволока, тем быстрей она отдает тепло окружающему воздуху, поскольку скорость теплообмена между телами пропорциональна разности их температур. Если скорость выделения тепла в проволоке невелика по сравнению со скоростью теплообмена, температура повышаться не будет. Именно поэтому обычная проволока не нагревается. А в опыте с волоском тепло уже не успевает рассеяться. Если витки провода сдвинуть достаточно близко, протекающий через волосок ток заметно увеличится, и волосок перегорит в той точке, которая была раскалена больше всего.

Другой вид неустойчивости проявляется в опытах с равноплечим сифоном – трубкой, с помощью которой воду переливают через стенку сосуда в другой сосуд, расположенный ниже. Изготовить сифон можно из любой гибкой трубки. Чтобы она сохраняла форму, вставьте в нее по всей длине кусок медной проволоки. Согните трубку точно посредине в виде буквы Л и опустите ее одним концом в кастрюлю с водой. Если через другой конец отсосать из трубки воздух, вода сама потечет через сифон. Это нетрудно объяснить, рассмотрев небольшой объем воды у вершины сифона А. Со стороны кастрюли на него действует давление P1 которое меньше атмосферного Pатм на давление столба воды высотой h1 от вершины сифона до уровня воды в кастрюле: P1=Pатм–Pgh1. С внешней стороны на этот же объем действует давление P2, которое можно определить по аналогичной формуле P2=Pатм–Pgh2, здесь h2 – высота столба воды во внешнем колене сифона. Поскольку h1 меньше h2, давление P1 с внутренней стороны больше давления P2 с внешней, и эта разность давлений приводит воду в движение.

Рис. 1. Опыт с равноплечим сифоном: а) работа сифона; б) возникновение неустойчивости; в) W-образный сифон

Если, зажав пальцем отверстие сифона, вертикально вынуть его из воды, давление в точке А с обеих сторон станет одинаковым. Однако вода сразу же вытечет, едва вы уберете палец: равновесие воды в таком сифоне неустойчиво. Действительно, предположим, что по случайным причинам вода в одном колене чуть-чуть понизилась, а в другом соответственно поднялась. Тогда у вершины сифона, как и в прошлом случае, возникнет разность давлений, направленная в сторону колена, где вода опустилась. Вода движется дальше, разность давлений растет, и сифон опорожняется с все возрастающей скоростью.

Перейти на страницу: 1 2 3

Немного больше о технологиях >>>

Эскиз к портрету биологической эволюции
История развития биологии сродни интеллектуальному детективу. Сначала – феноменологические дебри, несистемное накопление знаний, затем первые попытки систематизации. Когда стало ясно, что мир развивается, появились эволюционные гипотезы. Они отражали отдельные звенья этого слож ...

Микросхемотехника
Еще несколько лет назад различные электронные устройства собирали из отдельных элементов – электронных ламп, реле, трансформаторов, резисторов, конденсаторов, – долго и ненадежно, да и размеры аппаратуры получались весьма внушительными. Например, электронная вычислительная маши ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512