Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Формы, механизмы, энергия наномира

Энергетика – это центральная проблема в истории человечества.

Энергия костра, солнечная энергия, энергия атомного реактора . При освобождении такой энергии происходит изменение вещества (на уровне молекул, атомов или ядер). Следует заметить, что получение энергии из указанных выше источников связано с целым рядом недостатков, таких как негативное влияние на окружающую среду, низкую эффективность, зависимость от внешних условий, ограниченность запасов и др.

О другом виде энергии, содержащейся в более тонкой и фундаментальной структуре мира, чем микромир и лишенной указанных выше недостатков, написано немало научных работ, например [4, 6, 8, 10, 13, 15, 16, 17, 19 и т.д.]. Речь идет об энергии вакуума (максвелловского эфира) или, по-нашему, наномира. Концентрацию энергии еще в начале нашего века рассчитал Макс Планк [15]. По его расчетам, в одном кубометре эфира (вакуума, наномира) содержится порядка 10114 Дж энергии . Для сравнения упомянем, что кубометр ядерного топлива содержит около 1018 – 1021 Дж энергии, что на 96 – 93 порядка меньше. Как же эту чудовищную энергию извлечь?

Можно задать вопрос, который самим Планком был проигнорирован: если существует внутренняя энергия среды, например, внутренняя энергия вещества, то как ее реализовать как полезную?

Нужно создать или найти в готовом виде градиент этой внутренней энергии. Далее, используя разность температур или перепад другого вида внутренней энергии, можно преобразовать ее, например, в электричество термопарой или аналогичным устройством.

Теперь перейдем непосредственно к внутренней энергии вакуума или наномира.

Чтобы преобразовать его внутреннюю энергию в электричество или в другой полезный вид энергии желательно знать, каковы свойства наномира, т.е. какова форма и размеры его элементов, как они связаны между собой и какова их динамика.

Максу Планку, как мы увидим дальше, удалось рассчитать параметры так называемых максимонов, которые впоследствии были названы в честь него планкионами. Но его рассуждения носили чисто абстрактный характер.

Максвеллу, в нашем понимании, удалось определить в первом приближения форму элементов эфира и их взаимное расположение. Частные законы Фарадея, Ампера, Кулона оказались следствиями уравнений Максвелла.

Спустя несколько десятилетий Генрих Герц экспериментально обнаружил предсказанные Максвеллом электромагнитные волны и сумел подтвердить их поперечную структуру, которая была предсказана Максвеллом на основе своей "шестеренчатой" модели эфира.

Такой успех теории казался несомненным до экспериментов известных физиков Физо и Майкельсона [10, 12, 14, 15, 17, 18]. Эти эксперименты вызвали шок, так как их интерпретация убедила большинство ученых, что эфир не может существовать, т.к. обладает достаточно противоречивыми свойствами.

Интересно, что при этом отказ от уравнений Максвелла не был необходим. Но от исходной модели эфира все же отказались.

В последнее время, возвращаясь к модели светоносной среды (максвелловского эфира), некоторые исследователи опять идут по пути Макса Планка. При этом для них несущественно, является ли эфир аналогом идеального газа, жидкости или кристалла.

Другие исследователи пытаются разгадать саму структуру эфира. Эфир – это аналог газа, жидкости, кристалла, плазмы, пены, фрактала или чего-либо еще?

Попробуем проследить за выбором модели эфира. Она не должна противоречить уже известным свойствам моделируемой среды. А свойства у искомого нами эфира должны быть следующими. В нем могут существовать электрическое, магнитное и гравитационное поля. Согласно Максвеллу [13], поля являются напряженными состояниями этой среды. В такой среде могут существовать колебания. По Максвеллу, это электромагнитные колебания ее элементов. Далее, элементы такой среды должны бы обладать и внутренней энергией вращения. В этой среде, согласно Максвеллу, могут распространяться электромагнитные волны, причем со скоростью света. При этом они должны быть поперечными, что экспериментально проверил Герц [19].

Какая же из моделей эфира, претендующая на признание как единственно верная, обладает перечисленными свойствами? Газ, жидкость, пена не подходят, т.к. не способны проводить поперечные волны в дальнем поле источника. Кристаллоподобная структура и фракталы могут проводить поперечные волны, но эти модели критикуются многими учеными из-за анизотропии, ибо тогда, например, скорость света должна различаться по разным направлениям.

Перейти на страницу: 1 2 3 4 5 6

Немного больше о технологиях >>>

Судьба термоядерного синтеза
Идея создания термоядерного реактора зародилась в 1950-х годах. Тогда от нее было решено отказаться, поскольку ученые были не в состоянии решить множество технических проблем. Прошло несколько десятилетий прежде, чем ученым удалось «заставить» реактор произвести хоть сколько-ни ...

Применение световода на уроках физики
Школьник понимает физический опыт только тогда хорошо, когда он его делает сам. Но еще лучше он понимает его, если сам делает прибор для эксперимента. П.Л.Капица Физический эксперимент... Постановка его на уроке позволяет учителю не только подробно рассмотреть физические я ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512