Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Пример решения задачи по разделу «Переходные процессы»

Задача. Дана электрическая цепь, в которой происходит коммутация (Рис. 1). В цепи действует постоянная ЭДС Е. Требуется определить закон изменения во времени токов и напряжений после коммутации в ветвях схемы.

Задачу следует решить двумя методами: классическим и операторным. На основании полученного аналитического выражения построить график изменения искомой величины в функции времени в интервале от t = 0 до t = , где – меньший по модулю корень характеристического уравнения.

Параметры цепи: R1 = 15 Ом; R2 = 10 Ом; С = 10 мкФ; L = 10 мГ; Е = 100 В.

Решение.

Классический метод.

Решение задачи получается в виде суммы принужденного и свободного параметра:

i(t) = iпр(t) + iсв(t); u(t) = uпр(t)+ uсв(t), (1)

где , а .

1. Находим токи и напряжения докоммутационного режима для момента времени t = (0–). Так как сопротивление индуктивности постоянному току равно нулю, а емкости – бесконечности, то расчетная схема будет выглядеть так, как это изображено на рис. 2. Индуктивность закорочена, ветвь с емкостью исключена. Так как в схеме только одна ветвь, то ток i1(0–) равен току i3(0–), ток i2(0–) равен нулю, и в схеме всего один контур.

Составляем уравнение по второму закону Кирхгофа для этого контура:

,

откуда

= 4 А.

Напряжение на емкости равно нулю [uC(0–) = 0].

2. Определим токи и напряжения непосредственно после коммутации для момента времени t = 0+. Расчетная схема приведена на рис. 3. По первому закону коммутации iL(0–) = iL(0+), т.е. ток i3(0+) = 4 А. По второму закону коммутации uC(0–) = uC(0+) = 0.

Для контура, образованного ЭДС Е, сопротивлением R2 и емкостью С, согласно второго закона Кирхгофа имеем:

или

;

i1(0+) = i2(0+) + i3(0+) = 14 А.

Напряжение на сопротивлении R2 равно Е – uC(0+) = 100 В, напряжение на индуктивности равно напряжению на емкости.

3. Рассчитываем принужденные составляющие токов и напряжений для . Как и для докоммутационного режима индуктивность закорачивается, ветвь с емкостью исключается. Схема приведена на рис. 4. и аналогична схеме для расчета параметров докоммутационого режима.

= 10 А;

= 100 В; ;

Перейти на страницу: 1 2 3

Немного больше о технологиях >>>

Стратегия «золотой середины»
Выработанная веками народная мудрость, правило поведения или закон природы? Ниже я постараюсь показать, что это такой же универсальный закон природы как, скажем, закон всемирного тяготения. Понятие золотой середины далеко не ново. О нем писали еще Конфуций (551...479 до н.э. ...

Ламинарное и турбулентное течение вязкой жидкости
Вязкость. Коэффициент вязкости. Слоистое движение жидкости, возникающее при сильном влиянии трения. Воздействие статического давления на твердые тела, находящиеся в поле течения. Вязкий поток. Число Рейнольдса. ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512