Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Получение водорода

Основой для проектов ВТГР послужили разработки ядерных ракетных двигателей на водороде. Созданные в нашей стране для этих целей испытательные высокотемпературные реакторы и демонстрационные ядерные ракетные двигатели продемонстрировали работоспособность при нагреве водорода до рекордной температуры 3000К.

Высокотемпературные реакторы с гелиевым теплоносителем - это новый тип экологически чистых универсальных атомных энергоисточников, уникальные свойства которых - способность вырабатывать тепло при температурах более 10000С и высокий уровень безопасности - определяют широкие возможности их использования для производства в газотурбинном цикле электроэнергии с высоким КПД и для снабжения высокотемпературным теплом и электричеством процессов производства водорода, опреснения воды, технологических процессов химической, нефтеперерабатывающей, металлургической и др. отраслей промышленности.

Одним из наиболее продвинутых в этой области является международный проект ГТ-МГР, который разрабатывается совместными усилиями российских институтов и американской компании GA. С проектом сотрудничают также компании Фраматом и Фуджи электрик.

Получение атомного водорода.

В качестве источника атомного водорода используют вещества, отщепляющие при их облучении атомы водорода. Например, при облучении ультрафиолетовым светом йодистого водорода происходит реакция с образованием атомного водорода:

HI + hv® H + I

Для получения атомного водорода применяется также метод термической диссоциации молекулярного водорода на платиновой, палладиевой или вольфрамовой проволоке, нагретой в атмосфере водорода при давлении менее 1,33 Па. Диссоциации водорода на атомы можно достигнуть и при использовании радиоактивных веществ. Известен способ получения атомного водорода в высокочастотном электрическом разряде с последующим вымораживанием молекулярного водорода.

Физические методы извлечения водорода из водородосодержащих смесей.

Водород в значительных количествах содержится во многих газовых смесях, например в коксовом газе, в газе, получаемом при пиролизе бутадиена, в производстве дивинила.

Для извлечения водорода из водородосодержащих газовых смесей используют физические методы выделения и концентрирования водорода.

Низкотемпературная конденсация и фракционирование. Этот процесс характеризуется высокой степенью извлечения водорода из газовой смеси и благоприятными экономическими показателями. Обычно при давлении газа 4 МПа для получения 93-94%-ного водорода необходима температура 115К. При концентрации водорода в исходном газе более 40% степень его извлечения может достигать 95%. Расход энергии на концентрирование H2 от 70 до 90% составляет примерно 22 кВт.ч на 1000м3 выделяемого водорода.

Адсорбционное выделение. Этот процесс осуществляется при помощи молекулярных сит в циклически работающих адсорберах. Его можно проводить под давлением 3-3,5 МПа со степенью извлечения 80-85% H2 в виде 90%-ного концентрата. По сравнению с низкотемпературным методом выделения водорода для проведения этого процесса требуется примерно на 25-30% меньше капитальных и на 30-40% эксплуатационных затрат.

Адсорбционное выделение водорода при помощи жидких растворителей. В ряде случаев метод пригоден для получения чистого H2. По этому методу может быть извлечено 80-90% водорода, содержащегося в исходной газовой смеси, и достигнута его концентрация в целевом продукте 99,9%. Расход энергии на извлечение составляет 68 кВт.ч на 1000м3 H2.

Получение водорода электролизом воды.

Электролиз воды один из наиболее известных и хорошо исследованных методов получения водорода. Он обеспечивает получение чистого продукта (99,6-99,9% H2 ) в одну технологическую ступень. В производственных затратах на получение водорода стоимость электрической энергии составляет примерно 855.

Этот метод получил применение в ряде стран, обладающих значительными ресурсами дешевой гидроэнергии. Наиболее крупные электрохимические комплексы находятся в Канаде, Индии, Египте, Норвегии, но созданы и работают тысячи более мелких установок во многих странах мира. Важен этот метод и потому, что он является наиболее универсальным в отношении использования первичных источников энергии. В связи с развитием атомной энергетики возможен новый расцвет электролиза воды на базе дешевой электроэнергии атомных электростанций. Ресурсы современной электроэнергетики недостаточны для получения водорода в качестве продукта для дальнейшего энергетического использования.

Перейти на страницу: 1 2 3

Немного больше о технологиях >>>

Микросхемотехника
Еще несколько лет назад различные электронные устройства собирали из отдельных элементов – электронных ламп, реле, трансформаторов, резисторов, конденсаторов, – долго и ненадежно, да и размеры аппаратуры получались весьма внушительными. Например, электронная вычислительная маши ...

Обобщенный принцип наименьшего действия
Введены континуально многозначные функции, позволяющие адекватно описывать физические задачи. Показано их отличие от разрывных функций. Сформулирована и решена вариационная задача для функционалов с разрывным интегрантом, зависящих от линейных интегральных операторов, действующ ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512