Вариационная задача поиска оптимального оператора
(3.7)
Полагая, что к вариации (3.7) применима теорема Фубини, изменим порядок интегрирования и суммирования и положим вариацию dI равной нулю
(3.8)
Применяя к вариации (3.8) основную лемму вариационного исчисления в формулировке Л.Янга [7], получим необходимое условие экстремума функционала (3.1), зависящего от оператора (3.2),
(3.9)
Если интегрант функционала (3.1) не является линейным, частные производные интегранта всегда содержат сам оператор (3.2), а уравнение (3.9) является нелинейным двумерным интегральным уравнением, когда искомая функция K(x,t) двух независимых переменных входит под знак интеграла. Свойства уравнений типа (3.9) пока исследованы мало. Только если функционал I - квадратичный, уравнение (3.9) - линейное двумерное интегральное уравнение, некоторые свойства которых сведены в монографии [11].
Список литературы
[1] Фейнмановские лекции по
Немного больше о технологиях >>>
Применение световода на уроках физики
Школьник понимает физический опыт только
тогда хорошо, когда он его делает сам. Но еще лучше он понимает его, если сам
делает прибор для эксперимента.
П.Л.Капица
Физический эксперимент... Постановка его на
уроке позволяет учителю не только подробно рассмотреть физические я ...
Технологические основы электроники
1. Изобразить и описать последовательность формирования
изолированных областей в структуре с диэлектрической изоляцией
Рис. 1. Последовательность формирования изолированных
областей в структуре с диэлектрической изоляцией:
а — исходная пластина; б — избирательно ...